当前位置:
X-MOL 学术
›
Phys. Status Solidi B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Strain-Engineered Formation, Migration, and Electronic Properties of Polaronic Defects in CeO2
Physica Status Solidi (B) - Basic Solid State Physics ( IF 1.5 ) Pub Date : 2021-03-26 , DOI: 10.1002/pssb.202100020 Ling Zhang 1 , Lu Sun 2 , Qingling Meng 1 , Jinge Wu 1 , Xiamin Hao 1 , Shuwei Zhai 1 , Wenzhen Dou 1 , Yizhen Jia 1 , Miao Zhou 1
Physica Status Solidi (B) - Basic Solid State Physics ( IF 1.5 ) Pub Date : 2021-03-26 , DOI: 10.1002/pssb.202100020 Ling Zhang 1 , Lu Sun 2 , Qingling Meng 1 , Jinge Wu 1 , Xiamin Hao 1 , Shuwei Zhai 1 , Wenzhen Dou 1 , Yizhen Jia 1 , Miao Zhou 1
Affiliation
First-principles investigations on the strain-engineered formation, electronic structures, and migration properties of polaronic defects in ceria (CeO2), including single polarons, oxygen vacancies (Vo2+), and polaron–vacancy complexes [(Vo2+–1polaron)1+, (Vo2+–2polaron)0], are reported. Results show that the formation energy of oxygen vacancy increases with both tensile and compressive biaxial strain, whereas the formation energies of polarons and polaron–vacancy complexes reduce (increase) with tensile (compressive) strain, so that their defect concentrations behave drastically different with strain and temperature. Interestingly, due to the distinct deformation potentials, the polaronic defect states can shift toward band edges with strain, beneficial for enhanced electrical conductivity. The migration of polarons in CeO2 is further explored, and a tendency of strain-induced directional migration is revealed. These findings not only shed light on the fundamental properties of polaronic defects in CeO2 but also provide an attractive approach of combining defect engineering with strain engineering for oxide-based functional microelectronics, batteries, and catalysts.
中文翻译:
CeO2 中极化子缺陷的应变工程形成、迁移和电子特性
对氧化铈 (CeO 2 )中极化子缺陷的应变工程形成、电子结构和迁移特性的第一性原理研究,包括单极化子、氧空位 (Vo 2+ ) 和极化子 - 空位复合物 [(Vo 2+ - 1polaron) 1+ , (Vo 2+ –2polaron) 0],报道。结果表明,氧空位的形成能随着拉伸和压缩双轴应变而增加,而极化子和极化子 - 空位复合物的形成能随着拉伸(压缩)应变而减少(增加),因此它们的缺陷浓度随应变而显着不同和温度。有趣的是,由于不同的变形电位,极化子缺陷态可以随着应变向带边缘移动,有利于增强导电性。进一步探索了极化子在CeO 2中的迁移,揭示了应变诱导的定向迁移趋势。这些发现不仅揭示了 CeO 2中极化子缺陷的基本性质 但也为基于氧化物的功能微电子、电池和催化剂提供了一种将缺陷工程与应变工程相结合的有吸引力的方法。
更新日期:2021-03-26
中文翻译:
CeO2 中极化子缺陷的应变工程形成、迁移和电子特性
对氧化铈 (CeO 2 )中极化子缺陷的应变工程形成、电子结构和迁移特性的第一性原理研究,包括单极化子、氧空位 (Vo 2+ ) 和极化子 - 空位复合物 [(Vo 2+ - 1polaron) 1+ , (Vo 2+ –2polaron) 0],报道。结果表明,氧空位的形成能随着拉伸和压缩双轴应变而增加,而极化子和极化子 - 空位复合物的形成能随着拉伸(压缩)应变而减少(增加),因此它们的缺陷浓度随应变而显着不同和温度。有趣的是,由于不同的变形电位,极化子缺陷态可以随着应变向带边缘移动,有利于增强导电性。进一步探索了极化子在CeO 2中的迁移,揭示了应变诱导的定向迁移趋势。这些发现不仅揭示了 CeO 2中极化子缺陷的基本性质 但也为基于氧化物的功能微电子、电池和催化剂提供了一种将缺陷工程与应变工程相结合的有吸引力的方法。