当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Manipulating SnO2 Growth for Efficient Electron Transport in Perovskite Solar Cells
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2021-03-24 , DOI: 10.1002/admi.202100128 Zongyao Qian 1 , Libao Chen 1 , Jinpei Wang 1 , Ling Wang 1 , Yingdong Xia 1 , Xueqin Ran 1 , Ping Li 1 , Qi Zhong 2 , Lin Song 3 , Peter Müller‐Buschbaum 4, 5 , Yonghua Chen 1 , Hui Zhang 1
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2021-03-24 , DOI: 10.1002/admi.202100128 Zongyao Qian 1 , Libao Chen 1 , Jinpei Wang 1 , Ling Wang 1 , Yingdong Xia 1 , Xueqin Ran 1 , Ping Li 1 , Qi Zhong 2 , Lin Song 3 , Peter Müller‐Buschbaum 4, 5 , Yonghua Chen 1 , Hui Zhang 1
Affiliation
Solution-processed tin oxide (SnO2) is ubiquitously used as the electron transport layer (ETL) in perovskite solar cells, while the main concerns related to the application of SnO2 nanoparticles are the self-aggregation potential and infeasible energy level adjustment, leading to inhomogeneous thin films and mismatched energy alignment with perovskite. Herein, a novel route is developed by adding a functional titanium diisopropoxide bis(acetylacetonate) (TiAcAc) molecule, comprising TiO44– core, functional CO, and long alkene groups, into the SnO2 nanoparticle solution, to optimize the electronic transfer property of SnO2 for efficient perovskite solar cells. It is found that the TiO44– can be used to tune the electronic property of the SnO2 layer, and the long alkenes can act as a stabilizer to avoid the nanoparticle aggregation and electronic glue among the SnO2 nanoparticles in the eventual nanoparticulate thin film, enhancing its homogeneity and conductivity. Furthermore, the residual CO groups on the ETL surface can strongly associate with the Pb2+ and improve the interface intimacy between the ETL and perovskite. As a result, the efficiency of perovskite solar cells can be boosted from 18% to above 20% with significantly reduced hysteresis by employing SnO2-TiAcAc as electron transport layer, indicating a great potential for efficient perovskite solar cells.
中文翻译:
为钙钛矿型太阳能电池中的有效电子传输操纵SnO2的生长
固溶处理的氧化锡(SnO 2)普遍用作钙钛矿太阳能电池中的电子传输层(ETL),而与SnO 2纳米粒子的应用有关的主要问题是自聚集势和不可行的能级调整,导致不均匀的薄膜和与钙钛矿不匹配的能量排列。在此,一种新型的路线是通过将官能钛二异丙氧基双(乙酰丙酮)(TiAcAc)分子,其包含的TiO开发4 4-芯,功能 CO,和长链烯烃基团,进的SnO 2纳米颗粒溶液,以优化SnO 2的电子转移性质用于高效钙钛矿太阳能电池。发现TiO 4 4–可以用来调节SnO 2层的电子性能,长烯烃可以起到稳定剂的作用,从而避免了最终的纳米颗粒薄层中SnO 2纳米颗粒之间的纳米颗粒聚集和电子胶粘。膜,增强其均匀性和导电性。此外,残余的ETL表面上CO基团可以强烈地缔合与所述的Pb 2+和提高ETL和钙钛矿之间的界面亲切感。结果,通过使用SnO 2可以将钙钛矿太阳能电池的效率从18%提高到20%以上,并且具有显着降低的磁滞现象。-TiAcAc作为电子传输层,表明高效钙钛矿太阳能电池的巨大潜力。
更新日期:2021-05-25
中文翻译:
为钙钛矿型太阳能电池中的有效电子传输操纵SnO2的生长
固溶处理的氧化锡(SnO 2)普遍用作钙钛矿太阳能电池中的电子传输层(ETL),而与SnO 2纳米粒子的应用有关的主要问题是自聚集势和不可行的能级调整,导致不均匀的薄膜和与钙钛矿不匹配的能量排列。在此,一种新型的路线是通过将官能钛二异丙氧基双(乙酰丙酮)(TiAcAc)分子,其包含的TiO开发4 4-芯,功能 CO,和长链烯烃基团,进的SnO 2纳米颗粒溶液,以优化SnO 2的电子转移性质用于高效钙钛矿太阳能电池。发现TiO 4 4–可以用来调节SnO 2层的电子性能,长烯烃可以起到稳定剂的作用,从而避免了最终的纳米颗粒薄层中SnO 2纳米颗粒之间的纳米颗粒聚集和电子胶粘。膜,增强其均匀性和导电性。此外,残余的ETL表面上CO基团可以强烈地缔合与所述的Pb 2+和提高ETL和钙钛矿之间的界面亲切感。结果,通过使用SnO 2可以将钙钛矿太阳能电池的效率从18%提高到20%以上,并且具有显着降低的磁滞现象。-TiAcAc作为电子传输层,表明高效钙钛矿太阳能电池的巨大潜力。