Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy
ACS Nano ( IF 15.8 ) Pub Date : 2021-03-23 , DOI: 10.1021/acsnano.0c09829 Roland Kádár 1, 2 , Stefan Spirk 3 , Tiina Nypelö 2, 4
ACS Nano ( IF 15.8 ) Pub Date : 2021-03-23 , DOI: 10.1021/acsnano.0c09829 Roland Kádár 1, 2 , Stefan Spirk 3 , Tiina Nypelö 2, 4
Affiliation
Cellulose nanocrystals (CNCs) self-assemble and can be flow-assembled to liquid crystalline orders in a water suspension. The orders range from nano- to macroscale with the contributions of individual crystals, their micron clusters, and macroscopic assemblies. The resulting hierarchies are optically active materials that exhibit iridescence, reflectance, and light transmission. Although these assemblies have the potential for future renewable materials, details about structures on different hierarchical levels that span from the nano- to the macroscale are still not unraveled. Rheological characterization is essential for investigating flow properties; however, bulk material properties make it difficult to capture the various length-scales during assembly of the suspensions, for example, in simple shear flow. Rheometry is combined with other characterization methods to allow direct analysis of the structure development in the individual hierarchical levels. While optical techniques, scattering, and spectroscopy are often used to complement rheological observations, coupling them in situ to allow simultaneous observation is paramount to fully understand the details of CNC assembly from liquid to solid. This Review provides an overview of achievements in the coupled analytics, as well as our current opinion about opportunities to unravel the structural distinctiveness of cellulose nanomaterials.
中文翻译:
纤维素纳米晶液晶相:使用流变学耦合光学、散射和光谱进行表征的进展和挑战
纤维素纳米晶体(CNC)可以自组装,并且可以在水悬浮液中流动组装成液晶顺序。顺序范围从纳米到宏观,由单个晶体、微米簇和宏观组件的贡献组成。由此产生的层次结构是具有虹彩、反射率和光透射率的光学活性材料。尽管这些组件具有未来可再生材料的潜力,但从纳米尺度到宏观尺度的不同层次结构的细节仍然没有被阐明。流变特性对于研究流动特性至关重要;然而,散装材料的特性使得在悬浮液组装过程中难以捕获各种长度尺度,例如在简单的剪切流中。流变测定法与其他表征方法相结合,可以直接分析各个层次中的结构发展。虽然光学技术、散射和光谱学通常用于补充流变学观察,但将它们现场耦合以允许同时观察对于充分了解从液体到固体的 CNC 装配细节至关重要。本综述概述了耦合分析方面的成就,以及我们目前对揭示纤维素纳米材料结构独特性的机会的看法。
更新日期:2021-05-25
中文翻译:
纤维素纳米晶液晶相:使用流变学耦合光学、散射和光谱进行表征的进展和挑战
纤维素纳米晶体(CNC)可以自组装,并且可以在水悬浮液中流动组装成液晶顺序。顺序范围从纳米到宏观,由单个晶体、微米簇和宏观组件的贡献组成。由此产生的层次结构是具有虹彩、反射率和光透射率的光学活性材料。尽管这些组件具有未来可再生材料的潜力,但从纳米尺度到宏观尺度的不同层次结构的细节仍然没有被阐明。流变特性对于研究流动特性至关重要;然而,散装材料的特性使得在悬浮液组装过程中难以捕获各种长度尺度,例如在简单的剪切流中。流变测定法与其他表征方法相结合,可以直接分析各个层次中的结构发展。虽然光学技术、散射和光谱学通常用于补充流变学观察,但将它们现场耦合以允许同时观察对于充分了解从液体到固体的 CNC 装配细节至关重要。本综述概述了耦合分析方面的成就,以及我们目前对揭示纤维素纳米材料结构独特性的机会的看法。