当前位置: X-MOL 学术Physica A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-organization of oscillation in an epidemic model for COVID-19
Physica A: Statistical Mechanics and its Applications ( IF 2.8 ) Pub Date : 2021-03-18 , DOI: 10.1016/j.physa.2021.125925
Takashi Odagaki 1, 2
Affiliation  

On the basis of a compartment model, the epidemic curve is investigated when the net rate λ of change of the number of infected individuals I is given by an ellipse in the λ-I plane which is supported in [I,Ih]. With a(IhI)(Ih+I), it is shown that (1) when a<1, oscillation of the infection curve is self-organized and the period of the oscillation is in proportion to the ratio of the difference (IhI) and the geometric mean IhI of Ih and I, (2) when a=1, the infection curve shows a critical behavior where it decays obeying a power law function with exponent 2 in the long time limit after a peak, and (3) when a>1, the infection curve decays exponentially in the long time limit after a peak. The present result indicates that the pandemic can be controlled by a measure which makes I<0.



中文翻译:

COVID-19 流行病模型中振荡的自组织

在隔间模型的基础上,研究流行曲线时净率λ受感染人数的变化由椭圆给出λ-支持的平面[,H]. 和一种(H)(H+), 结果表明 (1) 当一种<1个,感染曲线的振荡是自组织的,振荡的周期与差异的比率成正比(H)和几何平均数HH, (2) 当一种=1个,感染曲线显示出一种临界行为,它服从具有指数的幂律函数衰减2个在峰值后的长时间限制中,以及 (3) 当一种>1个,感染曲线在峰值后的长时间限制内呈指数衰减。目前的结果表明,可以通过采取以下措施来控制大流行<0.

更新日期:2021-03-24
down
wechat
bug