当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Activate Fe3S4 Nanorods by Ni Doping for Efficient Dye-Sensitized Photocatalytic Hydrogen Production
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-21 , DOI: 10.1021/acsami.0c22869
Meng Zhang 1 , Xujian Chen 1 , Xinyan Jiang 1 , Jin Wang 1 , Liyun Xu 1 , Junhao Qiu 1 , Wenrong Lu 1 , Deli Chen 1 , Zhengquan Li 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-21 , DOI: 10.1021/acsami.0c22869
Meng Zhang 1 , Xujian Chen 1 , Xinyan Jiang 1 , Jin Wang 1 , Liyun Xu 1 , Junhao Qiu 1 , Wenrong Lu 1 , Deli Chen 1 , Zhengquan Li 1
Affiliation
![]() |
Developing suitable catalysts capable of receiving injected electrons and possessing active sites for hydrogen evolution reaction (HER) is the key to building an efficient dye-sensitized system for hydrogen production. Fe3S4 is generally regarded as an inferior HER catalyst among the metal sulfide family, mainly due to its weak surface adsorption toward H atoms. In this work, we demonstrate a facile metal–organic framework-derived method to synthesize uniform Fe3S4 nanorods and active them for HER by Ni doping. Our experimental results and theoretical calculations reveal that Ni doping can greatly modify the electronic structure of Fe3S4 nanorods, improving their electron conductivity and optimizing their surface adsorption energy toward H atoms. Sensitized by a commercial organic dye (eosin-Y), 1%Ni-doped Fe3S4 nanorods display a high H2 production rate of 3240 μmol gcat–1 h–1 with an apparent quantum yield of 12% under 500 nm wavelength, which is significantly higher than that of pristine Fe3S4 and even higher than that of 1% Pt-deposited Fe3S4. The working mechanism of this dye-sensitized system is explored, and the effect of Ni-doping concentration has been studied. This work presents a facile strategy to synthesize metal-doped sulfide nanocatalysts with greatly enhanced activity toward photocatalytic H2 production.
中文翻译:
镍掺杂活化Fe 3 S 4纳米棒可提高染料敏化的光催化制氢
开发能够接收注入的电子并具有氢释放反应(HER)活性位点的合适催化剂,是建立高效的染料敏化体系生产氢的关键。Fe 3 S 4通常被认为是金属硫化物族中较差的HER催化剂,这主要是由于Fe 3 S 4对H原子的表面吸附较弱。在这项工作中,我们证明了一种简便的金属-有机骨架衍生方法,可合成均匀的Fe 3 S 4纳米棒,并通过Ni掺杂将其用于HER。我们的实验结果和理论计算表明,Ni掺杂可以极大地改变Fe 3 S 4的电子结构纳米棒,提高其电子传导性并优化其对H原子的表面吸附能。1%Ni掺杂的Fe 3 S 4纳米棒受到商业有机染料(eosin-Y)的刺激,显示出3240μmolg cat –1 h –1的高H 2生产率,在500 nm下的表观量子产率为12%波长,远高于原始Fe 3 S 4的波长,甚至高于1%沉积Pt的Fe 3 S 4的波长。探索了该染料敏化体系的工作机理,并研究了镍掺杂浓度的影响。这项工作为合成金属掺杂的硫化物纳米催化剂提供了一种简便的策略,该催化剂对光催化H 2的生产具有大大增强的活性。
更新日期:2021-03-31
中文翻译:

镍掺杂活化Fe 3 S 4纳米棒可提高染料敏化的光催化制氢
开发能够接收注入的电子并具有氢释放反应(HER)活性位点的合适催化剂,是建立高效的染料敏化体系生产氢的关键。Fe 3 S 4通常被认为是金属硫化物族中较差的HER催化剂,这主要是由于Fe 3 S 4对H原子的表面吸附较弱。在这项工作中,我们证明了一种简便的金属-有机骨架衍生方法,可合成均匀的Fe 3 S 4纳米棒,并通过Ni掺杂将其用于HER。我们的实验结果和理论计算表明,Ni掺杂可以极大地改变Fe 3 S 4的电子结构纳米棒,提高其电子传导性并优化其对H原子的表面吸附能。1%Ni掺杂的Fe 3 S 4纳米棒受到商业有机染料(eosin-Y)的刺激,显示出3240μmolg cat –1 h –1的高H 2生产率,在500 nm下的表观量子产率为12%波长,远高于原始Fe 3 S 4的波长,甚至高于1%沉积Pt的Fe 3 S 4的波长。探索了该染料敏化体系的工作机理,并研究了镍掺杂浓度的影响。这项工作为合成金属掺杂的硫化物纳米催化剂提供了一种简便的策略,该催化剂对光催化H 2的生产具有大大增强的活性。