Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2021-03-19 , DOI: 10.1016/j.jcou.2021.101506 Opeyemi A. Ojelade , Sharif F. Zaman
The alarming scenario of global warming continues to drive mitigation actions to reduce the global temperature rise and keep this earth a dwelling place. In this regard, all the countries in this world have agreed upon a common agenda to take appropriate actions to reduce CO2 emission, mainly from the extensive use of fossil resources to meet the energy demand. In the past decade, an immense amount of work has been done in this regard, focusing on CO2 sequestration and CO2 utilization to valuable end products i.e. methanol, DME, formic acid, lower olefins, etc. A combination of both may not only utilize alternative carbon sources compared to the fossil sources but also imposes a carbon-neutral pathway, thereby aiding the reduction of CO2 accumulation in the atmosphere. CO2 transformation to lower olefins (C2-C4=) has the utmost demand to have an alternative environmental-friendly raw material for the polymer industries, but the majority of catalysts sought for this process are suffering from low selectivity (must possess low CH4, CO, and higher hydrocarbons, paraffin, and aromatic selectivity), which has driven increased interest in the design of an efficient hydrogenation catalyst. A detailed understanding of the structural-property relationships is vital towards designing scalable, efficient, economical, and intrinsically stable catalysts for the process. Therefore, this review focuses on the advances in heterogeneous catalyst design for CO2 hydrogenation to lower olefins, focusing on structure-property correlation via various influencing parameters, describing modified Fischer-Tropsch pathway and methanol mediated pathway with the influence of different types of zeolite and tandem catalysts. Also, mechanisms over these catalysts are discussed. Finally, future research strategies are proposed that would guide the design of novel CO2 hydrogenation catalysts incorporating a combination of core-shell tandem technology, machine learning, advanced DFT, and spectroscopic (in situ, ex situ) understanding of the reaction mechanism.
中文翻译:
CO 2加氢制备低级烯烃的评论:了解多相催化体系中的结构-性质关系
全球变暖的令人震惊的情况继续推动着减缓行动,以减少全球温度升高并使地球保持居住。在这方面,世界上所有国家都已商定一项共同议程,以采取适当行动减少CO 2排放,主要是通过广泛使用化石资源来满足能源需求。在过去的十年中,在这方面已经进行了大量的工作,重点是将CO 2隔离和将CO 2利用到有价值的最终产品中,例如甲醇,DME,甲酸,低级烯烃等。两者的结合不仅可以与化石资源相比,利用替代碳源,但也施加了碳中性途径,从而有助于减少CO 2在大气中积累。将CO 2转化为低级烯烃(C 2 -C 4 =)的最大需求是为聚合物工业提供替代的环境友好型原料,但是该方法寻求的大多数催化剂都存在选择性低的问题(必须具有较低的选择性)。 CH 4,CO和高级烃,石蜡和芳烃的选择性),这引起了人们对高效氢化催化剂设计的关注。对结构-性质关系的详细了解对于设计可扩展,高效,经济和本质稳定的催化剂至关重要。因此,本综述着眼于CO多相催化剂设计的进展。2氢化成低级烯烃,着重于通过各种影响参数的结构性质相关性,描述了在不同类型的沸石和串联催化剂的影响下修饰的Fischer-Tropsch途径和甲醇介导的途径。此外,讨论了这些催化剂的机理。最后,提出了未来的研究策略,这些策略将指导结合芯-壳串联技术,机器学习,先进的DFT和对反应机理的光谱学(原位,原位)理解相结合的新型CO 2加氢催化剂的设计。