当前位置:
X-MOL 学术
›
Chem. Asian J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Acceleration of Reverse Intersystem Crossing using Different Types of Charge Transfer States
Chemistry - An Asian Journal ( IF 3.5 ) Pub Date : 2021-03-19 , DOI: 10.1002/asia.202100091 Yoshimasa Wada 1 , Hiromichi Nakagawa 2 , Hironori Kaji 3
Chemistry - An Asian Journal ( IF 3.5 ) Pub Date : 2021-03-19 , DOI: 10.1002/asia.202100091 Yoshimasa Wada 1 , Hiromichi Nakagawa 2 , Hironori Kaji 3
Affiliation
There is a need to boost the rate constant of reverse intersystem crossing (kRISC) in thermally activated delayed fluorescence (TADF) materials for applications to organic light‐emitting diodes. Recently, energy level matching of the locally excited state (LE) and charge transfer state (CT) has been reported to enhance kRISC. In this study, we conceptually demonstrate that kRISC can be improved even between CT states without LE states, through the use of different types of CT states. On the basis of this concept, we design a new compound, named DMAC‐bPmT, where two phenyl groups of a well‐known TADF material DMAC‐TRZ are substituted by pyrimidine groups. Theoretical calculations indicated that the energy levels of the different CT states of DMAC‐bPmT are very close and enhanced spin orbit coupling may be expected between them. As predicted, DMAC‐bPmT experimentally exhibited a kRISC three times as high as that of DMAC‐TRZ.
中文翻译:
使用不同类型的电荷转移状态来加速反向系统间交叉
有必要提高热激活延迟荧光(TADF)材料中反向系统间交叉(k RISC)的速率常数,以应用于有机发光二极管。最近,已经报道了局部激发态(LE)和电荷转移态(CT)的能级匹配提高了k RISC。在这项研究中,我们从概念上证明了k RISC通过使用不同类型的CT状态,即使在没有LE状态的CT状态之间也可以得到改善。基于这一概念,我们设计了一种新的化合物,名为DMAC-bPmT,其中著名的TADF材料DMAC-TRZ的两个苯基被嘧啶基取代。理论计算表明,DMAC-bPmT的不同CT状态的能级非常接近,并且有望在它们之间增强自旋轨道耦合。正如预测的那样,DMAC-bPmT的k RISC实验值是DMAC-TRZ的三倍。
更新日期:2021-05-04
中文翻译:
使用不同类型的电荷转移状态来加速反向系统间交叉
有必要提高热激活延迟荧光(TADF)材料中反向系统间交叉(k RISC)的速率常数,以应用于有机发光二极管。最近,已经报道了局部激发态(LE)和电荷转移态(CT)的能级匹配提高了k RISC。在这项研究中,我们从概念上证明了k RISC通过使用不同类型的CT状态,即使在没有LE状态的CT状态之间也可以得到改善。基于这一概念,我们设计了一种新的化合物,名为DMAC-bPmT,其中著名的TADF材料DMAC-TRZ的两个苯基被嘧啶基取代。理论计算表明,DMAC-bPmT的不同CT状态的能级非常接近,并且有望在它们之间增强自旋轨道耦合。正如预测的那样,DMAC-bPmT的k RISC实验值是DMAC-TRZ的三倍。