当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intrinsically Nonflammable Ionic Liquid‐Based Localized Highly Concentrated Electrolytes Enable High‐Performance Li‐Metal Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-03-19 , DOI: 10.1002/aenm.202003752 Zhicheng Wang 1 , Fengrui Zhang 1 , Yiyang Sun 2 , Lei Zheng 1 , Yanbin Shen 1 , Daosong Fu 2 , Wanfei Li 2 , Anran Pan 2 , Lei Wang 2 , Jingjing Xu 1 , Jianchen Hu 3 , Xiaodong Wu 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-03-19 , DOI: 10.1002/aenm.202003752 Zhicheng Wang 1 , Fengrui Zhang 1 , Yiyang Sun 2 , Lei Zheng 1 , Yanbin Shen 1 , Daosong Fu 2 , Wanfei Li 2 , Anran Pan 2 , Lei Wang 2 , Jingjing Xu 1 , Jianchen Hu 3 , Xiaodong Wu 1
Affiliation
The development of high‐performance Li‐metal batteries (LMBs) requires advanced electrolytes that simultaneously possess high safety, high ionic conductivity, wide electrochemical window, and good ability to suppress Li dendrite growth. Herein an intrinsically nonflammable ionic liquid‐based localized highly concentrated electrolyte (LHCE) composed of lithium bis(fluorosulfonyl)imide (LiFSI) salt, N‐methyl‐N‐propyl‐piperidinium bis(fluorosulfonyl)imide ([PP13][FSI]) as ionic liquid solvent, and 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropylether (HFE) as diluent solvent is designed. The introduction of HFE greatly decreases the viscosity and cost of the pure ionic liquid electrolyte, improves its ionic conductivity, and enhances its ability to wet the separator surface. The Li+ solvation structure, Li deposition behavior, and formation of the solid electrolyte interphase (SEI) layer in LHCE are systematically investigated by using Raman spectroscopy, theoretical simulations, scanning electron microscopy, and X‐ray photoelectron spectroscopy. A rational mechanism is suggested for the stable SEI formation and the homogeneous Li deposition behavior. Due to its excellent ability to suppress Li dendrites, the LHCE exhibits a high average Coulombic efficiency (99.4% over 800 cycles in the Cu/Li cell), extremely stable cycling performance (10 mA cm−2 over 5000 cycles in the Li/Li symmetric cell), and excellent cycling performance and rate capability in the LMB systems of LiFePO4 (LFP)/Li and LFP/Li@Cu.
中文翻译:
基于本质上不可燃的离子液体的局部高浓度电解质可实现高性能锂金属电池
高性能锂金属电池(LMB)的发展需要先进的电解质,同时具有高安全性,高离子电导率,宽的电化学窗口和良好的抑制锂枝晶生长的能力。本文中的一种本质上不可燃的基于离子液体的局部高浓缩电解质(LHCE),由双(氟磺酰基)酰亚胺锂(LiFSI)盐,N-甲基-N-丙基-哌啶双(氟磺酰基)酰亚胺([PP 13] [FSI])作为离子液体溶剂,并设计了1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(HFE)作为稀释剂。HFE的引入大大降低了纯离子液体电解质的粘度和成本,提高了其离子电导率,并增强了其润湿隔膜表面的能力。李+通过拉曼光谱,理论模拟,扫描电子显微镜和X射线光电子能谱,系统地研究了LHCE中的溶剂化结构,锂沉积行为和固体电解质中间相(SEI)层的形成。提出了一个合理的机制来稳定SEI的形成和均匀的Li沉积行为。由于其出色的抑制Li树突的能力,LHCE表现出高的平均库仑效率(在Cu / Li电池中800个循环中,为99.4%),极其稳定的循环性能(在Li / Li中的5000个循环中,为10 mA cm -2) LiFePO 4(LFP)/ Li和LFP / Li @ Cu的LMB系统中具有出色的循环性能和速率能力。
更新日期:2021-05-06
中文翻译:
基于本质上不可燃的离子液体的局部高浓度电解质可实现高性能锂金属电池
高性能锂金属电池(LMB)的发展需要先进的电解质,同时具有高安全性,高离子电导率,宽的电化学窗口和良好的抑制锂枝晶生长的能力。本文中的一种本质上不可燃的基于离子液体的局部高浓缩电解质(LHCE),由双(氟磺酰基)酰亚胺锂(LiFSI)盐,N-甲基-N-丙基-哌啶双(氟磺酰基)酰亚胺([PP 13] [FSI])作为离子液体溶剂,并设计了1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(HFE)作为稀释剂。HFE的引入大大降低了纯离子液体电解质的粘度和成本,提高了其离子电导率,并增强了其润湿隔膜表面的能力。李+通过拉曼光谱,理论模拟,扫描电子显微镜和X射线光电子能谱,系统地研究了LHCE中的溶剂化结构,锂沉积行为和固体电解质中间相(SEI)层的形成。提出了一个合理的机制来稳定SEI的形成和均匀的Li沉积行为。由于其出色的抑制Li树突的能力,LHCE表现出高的平均库仑效率(在Cu / Li电池中800个循环中,为99.4%),极其稳定的循环性能(在Li / Li中的5000个循环中,为10 mA cm -2) LiFePO 4(LFP)/ Li和LFP / Li @ Cu的LMB系统中具有出色的循环性能和速率能力。