Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbon Nitride‐Based Ruthenium Single Atom Photocatalyst for CO2 Reduction to Methanol
Small ( IF 13.0 ) Pub Date : 2021-03-19 , DOI: 10.1002/smll.202006478 Priti Sharma 1 , Subodh Kumar 1 , Ondrej Tomanec 1 , Martin Petr 1 , Johnny Zhu Chen 2 , Jeffrey T. Miller 2 , Rajender S. Varma 1 , Manoj B. Gawande 1, 3 , Radek Zbořil 1, 4
Small ( IF 13.0 ) Pub Date : 2021-03-19 , DOI: 10.1002/smll.202006478 Priti Sharma 1 , Subodh Kumar 1 , Ondrej Tomanec 1 , Martin Petr 1 , Johnny Zhu Chen 2 , Jeffrey T. Miller 2 , Rajender S. Varma 1 , Manoj B. Gawande 1, 3 , Radek Zbořil 1, 4
Affiliation
With increasing concerns for global warming, the solar‐driven photocatalytic reduction of CO2 into chemical fuels like methanol is a propitious route to enrich energy supplies, with concomitant reduction of the abundant CO2 stockpiles. Herein, a novel single atom‐confinement and a strategy are reported toward single ruthenium atoms dispersion over porous carbon nitride surface. Ruthenium single atom character is well confirmed by EXAFS absorption spectrometric analysis unveiling the cationic coordination environment for the single‐atomic‐site ruthenium center, that is formed by Ru‐N/C intercalation in the first coordination shell, attaining synergism in N–Ru–N connection and interfacial carrier transfer. From time resolved fluorescence decay spectra, the average carrier lifetime of the RuSA–mC3N4 system is found to be higher compared to m‐C3N4; the fact uncovering the crucial role of single Ru atoms in promoting photocatalytic reaction system. A high yield of methanol (1500 µmol g‐1 cat. after 6 h of the reaction) using water as an electron donor and the reusability of the developed catalyst without any significant change in the efficiency represent the superior aspects for its potential application in real industrial technologies.
中文翻译:
氮化碳基钌单原子光催化剂,可将CO2还原为甲醇
随着对全球变暖问题的日益关注,太阳能驱动的光催化将CO 2还原为化学燃料(如甲醇)是丰富能源供应的有利途径,同时减少了丰富的CO 2 库存。在此,报道了一种新颖的单原子约束和一种将单钌原子分散在氮化碳多孔表面上的策略。EXAFS吸收光谱分析法很好地证实了钌的单原子特征,揭示了单原子位点钌中心的阳离子配位环境,该中心是通过在第一个配位壳中插入Ru-N / C形成的,在N-Ru-中获得了协同作用。 N连接和界面载体传输。根据时间分辨的荧光衰减光谱,发现RuSA–mC 3 N 4系统的平均载流子寿命比m‐C 3 N 4高; 这一事实揭示了单个Ru原子在促进光催化反应系统中的关键作用。使用水作为电子给体的高产率甲醇(反应6小时后为1500 µmol g -1 cat。)和已开发的催化剂的可重复使用性,而效率没有任何显着变化,代表了其在实际中的潜在应用的优越方面。工业技术。
更新日期:2021-04-22
中文翻译:
氮化碳基钌单原子光催化剂,可将CO2还原为甲醇
随着对全球变暖问题的日益关注,太阳能驱动的光催化将CO 2还原为化学燃料(如甲醇)是丰富能源供应的有利途径,同时减少了丰富的CO 2 库存。在此,报道了一种新颖的单原子约束和一种将单钌原子分散在氮化碳多孔表面上的策略。EXAFS吸收光谱分析法很好地证实了钌的单原子特征,揭示了单原子位点钌中心的阳离子配位环境,该中心是通过在第一个配位壳中插入Ru-N / C形成的,在N-Ru-中获得了协同作用。 N连接和界面载体传输。根据时间分辨的荧光衰减光谱,发现RuSA–mC 3 N 4系统的平均载流子寿命比m‐C 3 N 4高; 这一事实揭示了单个Ru原子在促进光催化反应系统中的关键作用。使用水作为电子给体的高产率甲醇(反应6小时后为1500 µmol g -1 cat。)和已开发的催化剂的可重复使用性,而效率没有任何显着变化,代表了其在实际中的潜在应用的优越方面。工业技术。