Nature Chemistry ( IF 19.2 ) Pub Date : 2021-03-15 , DOI: 10.1038/s41557-021-00643-z Yann K Petit 1 , Eléonore Mourad 1 , Christian Prehal 1 , Christian Leypold 1 , Andreas Windischbacher 2 , Daniel Mijailovic 1, 3 , Christian Slugovc 1 , Sergey M Borisov 4 , Egbert Zojer 2 , Sergio Brutti 5 , Olivier Fontaine 6, 7, 8 , Stefan A Freunberger 1, 8
Aprotic alkali metal–O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.
中文翻译:
介导的碱过氧化物氧化和三线态与单线态氧形成的机制
非质子碱金属-O 2电池面临两个主要障碍,以使其化学反应有效发生,即形成的碱金属超氧化物/过氧化物的绝缘性和由高反应性单线态氧 ( 1 O 2 )引起的寄生反应。氧化还原介体被认为是提高可充电性的关键。然而,尚不清楚它们如何影响1 O 2的形成,这阻碍了它们的改进策略。在这里,我们阐明了介导的过氧化物和超氧化物氧化的机制,从而解释了氧化还原介质如何增强或抑制1 O 2形成。我们表明充电开始于过氧化物氧化成超氧化物中间体,并且氧化还原电势高于 ~3.5 V 相对于 Li/Li +驱动1 O 2从超氧化物氧化中析出,而歧化总是产生一些1 O 2。我们发现1 O 2抑制需要比歧化产生1 O 2更快的氧化。氧化速率随着 Marcus 倒置区域行为后驱动力的增加而降低,建立最大速率区域。