当前位置:
X-MOL 学术
›
Mater. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailored dealloying-driven, graphene-boosted defective rutile TiO2−x for long-term lithium storage
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2021-2-25 , DOI: 10.1039/d1qm00188d
Yang Chen 1, 2, 3, 4 , Zhangfeng Li 4, 5, 6 , Chaofan Yang 1, 2, 3, 4 , Dong Qiu 1, 2, 3, 4 , Chengli He 1, 2, 3, 4 , Zhiyu Jiang 2, 3, 4, 7 , Xiaoli Cui 1, 2, 3, 4
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2021-2-25 , DOI: 10.1039/d1qm00188d
Yang Chen 1, 2, 3, 4 , Zhangfeng Li 4, 5, 6 , Chaofan Yang 1, 2, 3, 4 , Dong Qiu 1, 2, 3, 4 , Chengli He 1, 2, 3, 4 , Zhiyu Jiang 2, 3, 4, 7 , Xiaoli Cui 1, 2, 3, 4
Affiliation
![]() |
Ti3+ self-doping and/or an oxygen defect-induced impurity level in TiO2 lattices can serve as charge transfer carriers to accelerate electronic conduction, enabling TiO2 to be a promising anode alternative in lithium-ion batteries. Although previously reported post-reduction of Ti(IV) intermediates and direct oxidation of Ti(II) precursors can be used to prepare defective rutile TiO2, these processes usually require elevated temperatures. Herein, a tailored low-temperature dealloying approach, involving a new in situ oxidation–reduction mechanism, is proposed to synthesize blue defective rutile TiO2−x directly. The generated air-sensitive Ti3+ species on the surface are then handily stabilized by coupling with graphene. As a result, the TiO2−x/graphene composites exhibit desirable lithium storage capacities and outstanding long-term cycling stability (157 mA h g−1 at 1C after 1400 cycles) owing to the [001]-axis oriented nanorod self-assembly, faster electron transfer, and improved Li+ diffusivity. This work highlights a new formation mechanism of defective rutile TiO2−x, and considering the convenience and simplicity, it will provide new inspiration to the conventional dealloying strategy for low-temperature synthetic chemistry.
中文翻译:
量身定制的脱合金驱动,石墨烯增强的金红石型TiO2-x可长期储存锂
TiO 2晶格中的Ti 3+自掺杂和/或氧缺陷引起的杂质水平可以用作电荷转移载体以加速电子传导,从而使TiO 2成为锂离子电池中有希望的阳极替代品。尽管先前报道的Ti(IV)中间体的后还原反应和Ti(II)前体的直接氧化可用于制备有缺陷的金红石型TiO 2,但这些工艺通常需要升高的温度。本文提出了一种量身定制的低温脱合金方法,该方法涉及一种新的原位氧化还原机理,用于合成蓝色缺陷的金红石型TiO 2- x直接地。然后通过与石墨烯偶合,使表面上生成的对空气敏感的Ti 3+物种易于稳定。结果,由于[001]轴取向的纳米棒自组装,TiO 2- x /石墨烯复合材料表现出理想的锂存储容量和出色的长期循环稳定性(1400个循环后在1C下为157 mA hg -1)。更快的电子传输,并提高了Li +扩散率。这项工作突出了一种新的有缺陷的金红石型TiO 2- x的形成机理,并且考虑到方便性和简便性,这将为常规的低温合成化学脱合金策略提供新的启示。
更新日期:2021-03-16
中文翻译:

量身定制的脱合金驱动,石墨烯增强的金红石型TiO2-x可长期储存锂
TiO 2晶格中的Ti 3+自掺杂和/或氧缺陷引起的杂质水平可以用作电荷转移载体以加速电子传导,从而使TiO 2成为锂离子电池中有希望的阳极替代品。尽管先前报道的Ti(IV)中间体的后还原反应和Ti(II)前体的直接氧化可用于制备有缺陷的金红石型TiO 2,但这些工艺通常需要升高的温度。本文提出了一种量身定制的低温脱合金方法,该方法涉及一种新的原位氧化还原机理,用于合成蓝色缺陷的金红石型TiO 2- x直接地。然后通过与石墨烯偶合,使表面上生成的对空气敏感的Ti 3+物种易于稳定。结果,由于[001]轴取向的纳米棒自组装,TiO 2- x /石墨烯复合材料表现出理想的锂存储容量和出色的长期循环稳定性(1400个循环后在1C下为157 mA hg -1)。更快的电子传输,并提高了Li +扩散率。这项工作突出了一种新的有缺陷的金红石型TiO 2- x的形成机理,并且考虑到方便性和简便性,这将为常规的低温合成化学脱合金策略提供新的启示。