当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring Slurries Using Cosolvents and Li Salt Targeting Practical All‐Solid‐State Batteries Employing Sulfide Solid Electrolytes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-03-14 , DOI: 10.1002/aenm.202003766 Kyu Tae Kim 1 , Dae Yang Oh 1 , Seunggoo Jun 1 , Yong Bae Song 1 , Tae Young Kwon 1, 2 , Yoonjae Han 1, 2 , Yoon Seok Jung 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-03-14 , DOI: 10.1002/aenm.202003766 Kyu Tae Kim 1 , Dae Yang Oh 1 , Seunggoo Jun 1 , Yong Bae Song 1 , Tae Young Kwon 1, 2 , Yoonjae Han 1, 2 , Yoon Seok Jung 1
Affiliation
Polymeric binders that can undergo slurry fabrication and minimize the disruption of interfacial Li+ contact are imperative for sheet‐type electrodes and solid electrolyte films in practical all‐solid‐state Li batteries (ASLBs). Although dry polymer electrolytes (DPEs) are a plausible alternative, their use is complicated by the severe reactivity of sulfide solid electrolytes and the need to dissolve Li salts. In this study, a new scalable fabrication protocol for a Li+‐conductive DPE‐type binder, nitrile‐butadiene rubber (NBR)‐LiTFSI, is reported. The less‐polar dibromomethane and more‐polar hexyl butyrate in cosolvents work synergistically to dissolve NBR and LiTFSI, while preserving Li6PS5Cl0.5Br0.5. It is found that the dispersion of NBR can be controlled by the fraction of the antisolvent (hexyl butyrate), which in turn affects the corresponding performance of the ASLBs. Sheet‐type LiNi0.70Co0.15Mn0.15O2 electrodes tailored using NBR‐LiTFSI outperform those prepared using the conventional insulating binder (NBR) in terms of capacity (163 vs 147 mA h g−1) and initial Coulombic efficiency (78.9 vs 70.4%), which is attributed to the facilitated interfacial Li+ transport, as confirmed by 6Li nuclear magnetic resonance and electrochemical measurements. Moreover, NBR‐LiTFSI is functional at 70 °C and in a graphite anode. Finally, the promising performance of pouch‐type LiNi0.70Co0.15Mn0.15O2/graphite ASLBs is also demonstrated.
中文翻译:
使用助溶剂和锂盐定制浆料,以硫化固态电解质为目标的实用全固态电池
在实际的全固态锂电池(ASLB)中,片状电极和固体电解质膜必须经过浆液制造并最大程度地减少界面Li +接触的破坏,这对于聚合物粘合剂是必不可少的。尽管干聚合物电解质(DPE)是可行的替代方案,但由于硫化物固体电解质的严重反应性和溶解Li盐的需要,使它们的使用变得复杂。在这项研究中,报告了一种新的可扩展制造协议,该协议可用于Li +导电DPE型粘合剂,丁腈橡胶(NBR)-LiTFSI。助溶剂中的较低极性的二溴甲烷和较高极性的丁酸己酯协同作用以溶解NBR和LiTFSI,同时保留Li 6 PS 5 Cl 0.5 Br0.5。已发现,NBR的分散可通过抗溶剂(丁酸己酯)的比例来控制,这反过来又会影响ASLB的相应性能。使用NBR-LiTFSI量身定制的片状LiNi 0.70 Co 0.15 Mn 0.15 O 2电极在容量(163 vs 147 mA h g -1)和初始库仑效率(78.9 vs 70.4%)方面优于使用传统绝缘粘合剂(NBR)制备的电极),这归因于界面Li +传输的便利,如6 Li核磁共振和电化学测量所证实。此外,NBR-LiTFSI在70 °时仍可正常工作 C和石墨阳极。最后,还展示了袋型LiNi 0.70 Co 0.15 Mn 0.15 O 2 /石墨ASLBs的良好性能。
更新日期:2021-05-06
中文翻译:
使用助溶剂和锂盐定制浆料,以硫化固态电解质为目标的实用全固态电池
在实际的全固态锂电池(ASLB)中,片状电极和固体电解质膜必须经过浆液制造并最大程度地减少界面Li +接触的破坏,这对于聚合物粘合剂是必不可少的。尽管干聚合物电解质(DPE)是可行的替代方案,但由于硫化物固体电解质的严重反应性和溶解Li盐的需要,使它们的使用变得复杂。在这项研究中,报告了一种新的可扩展制造协议,该协议可用于Li +导电DPE型粘合剂,丁腈橡胶(NBR)-LiTFSI。助溶剂中的较低极性的二溴甲烷和较高极性的丁酸己酯协同作用以溶解NBR和LiTFSI,同时保留Li 6 PS 5 Cl 0.5 Br0.5。已发现,NBR的分散可通过抗溶剂(丁酸己酯)的比例来控制,这反过来又会影响ASLB的相应性能。使用NBR-LiTFSI量身定制的片状LiNi 0.70 Co 0.15 Mn 0.15 O 2电极在容量(163 vs 147 mA h g -1)和初始库仑效率(78.9 vs 70.4%)方面优于使用传统绝缘粘合剂(NBR)制备的电极),这归因于界面Li +传输的便利,如6 Li核磁共振和电化学测量所证实。此外,NBR-LiTFSI在70 °时仍可正常工作 C和石墨阳极。最后,还展示了袋型LiNi 0.70 Co 0.15 Mn 0.15 O 2 /石墨ASLBs的良好性能。