当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in cesium lead iodide perovskite solar cells: Processing science matters
Materials Today ( IF 21.1 ) Pub Date : 2021-03-14 , DOI: 10.1016/j.mattod.2021.01.014
Qingrong Huang , Yang Liu , Faming Li , Mingzhen Liu , Yuanyuan Zhou

The prevailing perovskite solar cells (PSCs) employ hybrid organic–inorganic halide perovskites as light absorbers, but these materials exhibit relatively poor environmental stability, which potentially hinders the practical deployment of PSCs. One important strategy to address this issue is replacing the volatile and hygroscopic organic cations with inorganic cesium cations in the crystal structure, forming all-inorganic halide perovskites. In this context, CsPbI3 perovskite is drawing phenomenal attention, primarily because it exhibits an ideal bandgap of 1.7 eV for the use in tandem solar cells, and it shows significantly enhanced thermal stability that is the key to the long-term device operation. Within only half a decade, the power conversion efficiency (PCE) of CsPbI3 PSCs has ramped beyond 20%, which has been driven by inventions of numerous processing methods for high-quality CsPbI3 perovskite thin films. These methods are broadly classified into three categories: vapor deposition, nanocrystals assembly, and solution deposition. Herein we present a systematic review on these methods and related materials sciences. In particular, we comprehensively discuss the dimethylammonium-additive-based solution deposition, which has resulted into the best-performing CsPbI3 PSCs. We also present the challenges and prospects on future research towards the realization of the full potential of CsPbI3 PSCs.



中文翻译:

铯铅碘化钙钛矿太阳能电池的进展:加工科学很重要

流行的钙钛矿太阳能电池(PSC)采用混合有机-无机卤化物钙钛矿作为光吸收剂,但这些材料的环境稳定性相对较差,这可能会阻碍 PSC 的实际部署。解决这个问题的一个重要策略是用晶体结构中的无机铯阳离子代替挥发性和吸湿性的有机阳离子,形成全无机卤化物钙钛矿。在这种情况下,CsPbI 3钙钛矿引起了极大的关注,主要是因为它具有用于串联太阳能电池的 1.7 eV 的理想带隙,并且显示出显着增强的热稳定性,这是设备长期运行的关键。在短短五年内,CsPbI 3的功率转换效率 (PCE)PSC 已超过 20%,这是由许多用于高质量 CsPbI 3钙钛矿薄膜的加工方法的发明所推动的。这些方法大致分为三类:气相沉积、纳米晶体组装和溶液沉积。在此,我们对这些方法和相关材料科学进行了系统回顾。特别是,我们全面讨论了基于二甲基铵添加剂的溶液沉积,这导致了性能最佳的 CsPbI 3 PSC。我们还提出了未来研究的挑战和前景,以实现 CsPbI 3 PSC的全部潜力。

更新日期:2021-03-14
down
wechat
bug