当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2021-03-15 , DOI: 10.1016/j.jcis.2021.03.032
Liang Wu , Shaozhuan Huang , Wenda Dong , Yan Li , Zhouhao Wang , Hemdan S.H. Mohamed , Yu Li , Bao-Lian Su

Herein we develop a novel and effective alkoxide hydrolysis approach to in-situ construct the trimanganese tetraoxide (Mn3O4)/graphene nanostructured composite as high-performance anode material for lithium-ion batteries (LIBs). This is the first report on the synthesis of Mn3O4/graphene composite via a facile hydrolysis of the manganese alkoxide (Mn-alkoxide)/graphene precursor. Before hydrolysis, two dimensional (2D) Mn-alkoxide nanoplates are closely adhered to 2D graphene nanosheets via Mn-O chemical bonding. After hydrolysis, the Mn-alkoxide in-situ converts to Mn3O4, while the Mn-O bond is preserved. This leads to a robust Mn3O4/graphene hybrid architecture with 15 nm Mn3O4 nanocrystals homogeneously anchoring on graphene nanosheets. This not only prevents the Mn3O4 nanocrystals agglomeration but also inversely mitigates the graphene nanosheets restacking. Moreover, the flexible and conductive graphene nanosheets can accommodate the volume change. This maintains the structural and electrical integrity of the Mn3O4/graphene electrode during the cycling process. As a result, the Mn3O4/graphene composite displays superior lithium storage performance with high reversible capacity (741 mAh g−1 at 100 mA g−1), excellent rate capability (403 mAh g−1 at 1000 mA g−1) and long cycle life (527 mAg g−1 after 300 cycles at 500 mA g−1). The electrochemical performance highlights the importance of rational design nanocrystals anchoring on graphene nanosheets for high-performance LIBs application.



中文翻译:

醇盐水解原位构建坚固的四氧化三锰/石墨烯复合材料,用于高性能锂存储

本文中,我们开发了一种新颖且有效的醇盐水解方法,以原位构建四氧化三锰(Mn 3 O 4)/石墨烯纳米结构复合材料,作为锂离子电池(LIBs)的高性能负极材料。这是关于通过锰醇盐(Mn-醇盐)/石墨烯前体的容易水解来合成Mn 3 O 4 /石墨烯复合物的第一份报道。在水解之前,通过Mn-O化学键将二维(2D)Mn-醇盐纳米板紧密粘附到2D石墨烯纳米片上。水解后,Mn-醇盐原位转化为Mn 3 O 4,同时保留了Mn-O键。这导致锰的稳健具有15 nm Mn 3 O 4纳米晶体均匀锚固在石墨烯纳米片上的3 O 4 /石墨烯杂化结构。这不仅防止了Mn 3 O 4纳米晶体的团聚,而且反过来减轻了石墨烯纳米片的重新堆积。此外,柔性且导电的石墨烯纳米片可适应体积变化。这在循环过程中保持了Mn 3 O 4 /石墨烯电极的结构和电完整性。结果,Mn 3 O 4 /石墨烯复合材料显示出优异的锂存储性能和高可逆容量(741 mAh g -1在100mA克-1),优良的速率能力(403毫安克-1以1000mA克-1)和长的循环寿命(527 MAG克-1后以500mA克300个循环-1)。电化学性能突显了合理设计纳米晶体锚固在石墨烯纳米片上对于高性能LIB应用的重要性。

更新日期:2021-03-26
down
wechat
bug