当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
SnO2/TiO2 Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-03-12 , DOI: 10.1021/acsaem.0c03185 Mousa Abuhelaiqa 1 , Naoyuki Shibayama 2 , Xiao-Xin Gao 1 , Hiroyuki Kanda 1 , Mohammad Khaja Nazeeruddin 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-03-12 , DOI: 10.1021/acsaem.0c03185 Mousa Abuhelaiqa 1 , Naoyuki Shibayama 2 , Xiao-Xin Gao 1 , Hiroyuki Kanda 1 , Mohammad Khaja Nazeeruddin 1
Affiliation
Perovskite solar cells have driven a paradigm shift in the research domain of photovoltaics. Although the field has progressed tremendously, device stability holds back further progress and application to the market. In this work, we aim to gain insights into electron transport layer (ETL)/perovskite interfacial degradation by characterizing perovskite films with TiO2, SnO2, and TiO2/SnO2 ETLs. Our results demonstrate that SnO2 and TiO2/SnO2 maintained long-term stability of 1000 h under maximum power point tracking, while the TiO2 sample degraded upon onset. We attempt to link this analogy to the perovskite film properties by monitoring the optoelectronic and morphological features under light soaking for each electron transporting layer configuration. Our results demonstrate reduced photoluminescent emission and decay, perovskite film morphological degradation, and a surge in PbI2 in TiO2 samples, trends that were not found in SnO2 and TiO2/SnO2 samples. We highlight the passivation effect of SnO2 films in the bilayered ETL configuration (TiO2/SnO2) that results in stability enhancement phenomena as speculated from our constructed energy diagram. The results show that the SnO2 layer could suppress charge recombination with the perovskite layer and improves the optical durability.
中文翻译:
SnO 2 / TiO 2电子传输双层:光稳定钙钛矿太阳能电池的途径
钙钛矿太阳能电池推动了光伏研究领域的范式转变。尽管该领域取得了长足的进步,但设备稳定性阻碍了进一步的进步和在市场上的应用。在这项工作中,我们旨在通过表征具有TiO 2,SnO 2和TiO 2 / SnO 2 ETL的钙钛矿薄膜来深入了解电子传输层(ETL)/钙钛矿界面降解。我们的结果表明,SnO 2和TiO 2 / SnO 2在最大功率点跟踪下可保持1000 h的长期稳定性,而TiO 2样品在发病时降解。我们试图通过监视每个电子传输层配置的光吸收下的光电和形态学特征,将这种类比与钙钛矿薄膜的特性联系起来。我们的结果表明,减少的光致发光发射和衰减,钙钛矿薄膜的形态降解以及TiO 2样品中的PbI 2激增,在SnO 2和TiO 2 / SnO 2样品中未发现这种趋势。我们强调SnO的钝化效果2层在双层ETL配置膜(的TiO 2 /的SnO 2)会导致稳定性增强现象,这是根据我们构建的能量图推测得出的。结果表明,SnO 2层可以抑制与钙钛矿层的电荷复合,并提高光学耐久性。
更新日期:2021-04-26
中文翻译:
SnO 2 / TiO 2电子传输双层:光稳定钙钛矿太阳能电池的途径
钙钛矿太阳能电池推动了光伏研究领域的范式转变。尽管该领域取得了长足的进步,但设备稳定性阻碍了进一步的进步和在市场上的应用。在这项工作中,我们旨在通过表征具有TiO 2,SnO 2和TiO 2 / SnO 2 ETL的钙钛矿薄膜来深入了解电子传输层(ETL)/钙钛矿界面降解。我们的结果表明,SnO 2和TiO 2 / SnO 2在最大功率点跟踪下可保持1000 h的长期稳定性,而TiO 2样品在发病时降解。我们试图通过监视每个电子传输层配置的光吸收下的光电和形态学特征,将这种类比与钙钛矿薄膜的特性联系起来。我们的结果表明,减少的光致发光发射和衰减,钙钛矿薄膜的形态降解以及TiO 2样品中的PbI 2激增,在SnO 2和TiO 2 / SnO 2样品中未发现这种趋势。我们强调SnO的钝化效果2层在双层ETL配置膜(的TiO 2 /的SnO 2)会导致稳定性增强现象,这是根据我们构建的能量图推测得出的。结果表明,SnO 2层可以抑制与钙钛矿层的电荷复合,并提高光学耐久性。