当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ni0.85Se/MoSe2 Interfacial Structure: An Efficient Electrocatalyst for Alkaline Hydrogen Evolution Reaction
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-03-11 , DOI: 10.1021/acsaem.1c00125 Harish Reddy Inta 1 , Sourav Ghosh 1 , Ayan Mondal 1 , Gouri Tudu 1 , Heramba V S R M Koppisetti 1 , Venkataramanan Mahalingam 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-03-11 , DOI: 10.1021/acsaem.1c00125 Harish Reddy Inta 1 , Sourav Ghosh 1 , Ayan Mondal 1 , Gouri Tudu 1 , Heramba V S R M Koppisetti 1 , Venkataramanan Mahalingam 1
Affiliation
Catalyzing hydrogen evolution reaction in alkali media is challenging owing to the sluggish kinetics, originated from the water dissociation process. In this context, synergistic coupling between Ni/Co-based materials with transition metal dichalcogenides (TMDs) often accelerates the alkaline hydrogen evolution reaction (HER). Significant interaction between the two components and active-site density are the keys for achieving a promising catalytic activity. This report emphasizes a two-step selenization approach to prepare a Ni0.85Se/MoSe2 interfacial structure with abundant active sites. Initially, Ni0.75Se nanoparticles were prepared using the solvothermal method and subsequently employed them as a support for the growth of MoSe2 under hydrothermal conditions. This resulted in the formation of a Ni0.85Se/MoSe2 interfacial structure. The results of physical characterization techniques confirm the significant interaction between Ni0.85Se and MoSe2. The interfacial structures showed a superior HER activity in alkali media compared to the individual components; especially, Ni0.85Se/MoSe2 (20) delivers a current density of 10 mA cm–2 at an overpotential of 108 mV. The improved HER activity of the interfacial structure is attributed to the (i) efficient water dissociation process over the Ni0.85Se promoter and (ii) exposure of more catalytic active sites (edges) of MoSe2. In addition, as-prepared Ni0.75Se exhibits a better oxygen evolution reaction (OER) activity by delivering a current density of 10 mA cm–2 at an overpotential of 340 mV. Furthermore, overall water splitting has been demonstrated by constructing an electrolyzer using Ni0.85Se/MoSe2 (20) and Ni0.75Se as a cathode and anode, respectively. The electrolyzer delivers a current density of 10 mA cm–2 at a cell potential of 1.7 V. The long-term stability experiment and the post catalytic characterization reveals the high robustness of the Ni0.85Se/MoSe2 interfacial structure.
中文翻译:
Ni 0.85 Se / MoSe 2界面结构:碱性氢析出反应的高效电催化剂
由于来自水分解过程的动力学缓慢,在碱性介质中催化氢释放反应具有挑战性。在这种情况下,Ni / Co基材料与过渡金属二卤化物(TMDs)之间的协同偶联通常会加速碱性氢放出反应(HER)。两种组分之间的显着相互作用以及活性位点密度是实现有希望的催化活性的关键。该报告强调了两步硒化方法,以制备具有丰富活性位点的Ni 0.85 Se / MoSe 2界面结构。最初,使用溶剂热法制备Ni 0.75 Se纳米粒子,然后将其用作MoSe 2生长的载体在热液条件下。这导致Ni 0.85 Se / MoSe 2界面结构的形成。物理表征技术的结果证实了Ni 0.85 Se和MoSe 2之间的显着相互作用。与单独的组分相比,界面结构在碱性介质中显示出优异的HER活性。尤其是,Ni 0.85 Se / MoSe 2(20)在108 mV的过电势下提供10 mA cm –2的电流密度。界面结构的HER活性提高归因于(i)Ni大于0.85时有效的水离解过程硒促进剂和(ii)暴露更多的MoSe 2催化活性位点(边缘)。此外,制备的Ni 0.75 Se通过在340 mV的超电势下提供10 mA cm –2的电流密度,表现出更好的氧释放反应(OER)活性。此外,通过构造分别使用Ni 0.85 Se / MoSe 2(20)和Ni 0.75 Se作为阴极和阳极的电解槽已证明了总的水分解。该电解槽在1.7 V的电池电势下可提供10 mA cm –2的电流密度。长期稳定性实验和后催化特性表明,Ni 0.85 Se / MoSe具有很高的耐用性2界面结构。
更新日期:2021-03-22
中文翻译:
Ni 0.85 Se / MoSe 2界面结构:碱性氢析出反应的高效电催化剂
由于来自水分解过程的动力学缓慢,在碱性介质中催化氢释放反应具有挑战性。在这种情况下,Ni / Co基材料与过渡金属二卤化物(TMDs)之间的协同偶联通常会加速碱性氢放出反应(HER)。两种组分之间的显着相互作用以及活性位点密度是实现有希望的催化活性的关键。该报告强调了两步硒化方法,以制备具有丰富活性位点的Ni 0.85 Se / MoSe 2界面结构。最初,使用溶剂热法制备Ni 0.75 Se纳米粒子,然后将其用作MoSe 2生长的载体在热液条件下。这导致Ni 0.85 Se / MoSe 2界面结构的形成。物理表征技术的结果证实了Ni 0.85 Se和MoSe 2之间的显着相互作用。与单独的组分相比,界面结构在碱性介质中显示出优异的HER活性。尤其是,Ni 0.85 Se / MoSe 2(20)在108 mV的过电势下提供10 mA cm –2的电流密度。界面结构的HER活性提高归因于(i)Ni大于0.85时有效的水离解过程硒促进剂和(ii)暴露更多的MoSe 2催化活性位点(边缘)。此外,制备的Ni 0.75 Se通过在340 mV的超电势下提供10 mA cm –2的电流密度,表现出更好的氧释放反应(OER)活性。此外,通过构造分别使用Ni 0.85 Se / MoSe 2(20)和Ni 0.75 Se作为阴极和阳极的电解槽已证明了总的水分解。该电解槽在1.7 V的电池电势下可提供10 mA cm –2的电流密度。长期稳定性实验和后催化特性表明,Ni 0.85 Se / MoSe具有很高的耐用性2界面结构。