当前位置: X-MOL 学术Electrochem. Energy Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the Mechanism of the Oxygen Evolution Reaction with Consideration of Spin
Electrochemical Energy Reviews ( IF 28.4 ) Pub Date : 2020-11-24 , DOI: 10.1007/s41918-020-00084-1
Xiaoning Li , Zhenxiang Cheng , Xiaolin Wang

The oxygen evolution reaction (OER) with its intractably high overpotentials is the rate-limiting step in many devices, including rechargeable metal–air batteries, water electrolysis systems and solar fuel devices. Correspondingly, spin state transitions from spin singlet OH–/H2O reactants to spin triplet O2 product have not yet received enough attention. In view of this, this article will discuss electron behaviours during OER by taking into consideration of spin attribute. The main conclusion is that, regardless of the possible adopted mechanisms (the adsorbate evolution mechanism or the lattice oxygen mechanism), the underlying rationale of OER is that three in four electrons being extracted from adsorbates should be in the same spin direction before O=O formation, superimposing high requirements on the spin structure of electrocatalysts. Therefore, upon fully understanding of the OER mechanism with considerations of spin, the awareness of the coupling between spin, charge, orbital and lattice parameters is necessary in the optimization of geometric and electronic structures in transition metal systems. Based on this, this article will discuss the possible dependency of OER efficiency on the electrocatalyst spin configuration, and the relevance of well-recognized factors with spin, including the crystal field, coordination, oxidation, bonding, the eg electron number, conductivity and magnetism. It is hoped that this article will clarify the underlying physics of OER to provide rational guidance for more effective design of energy conversion electrocatalysts.

中文翻译:

在考虑自旋的情况下了解氧释放反应的机理

氧气释放反应(OER)具有极高的过电势,是许多设备(包括可充电金属-空气电池,水电解系统和太阳能设备)中的限速步骤。相应地,从自旋单重态OH- / H2O反应物到自旋三重态O2产物的自旋态转变尚未引起足够的重视。有鉴于此,本文将通过考虑自旋属性来讨论OER期间的电子行为。主要结论是,无论采用哪种可能的机制(吸附质析出机理或晶格氧机理),OER的基本原理都是:从O到O之前,从吸附质中提取的四个电子中有三个应处于相同的自旋方向的形成,对电催化剂的自旋结构有很高的要求。因此,在充分考虑了自旋的OER机制后,在优化过渡金属系统中的几何和电子结构时,必须了解自旋,电荷,轨道和晶格参数之间的耦合。基于此,本文将讨论OER效率对电催化剂自旋构型的可能依赖性,以及公认的因素与自旋的相关性,包括晶场,配位,氧化,键合,例如电子数,电导率和磁性。希望本文能够阐明OER的基本原理,为更有效地设计能量转换电催化剂提供合理的指导。在过渡金属系统中优化几何和电子结构时,电荷,轨道和晶格参数是必需的。基于此,本文将讨论OER效率对电催化剂自旋构型的可能依赖性,以及公认的因素与自旋的相关性,包括晶场,配位,氧化,键合,例如电子数,电导率和磁性。希望本文能够阐明OER的基本原理,为更有效地设计能量转换电催化剂提供合理的指导。在过渡金属系统中优化几何和电子结构时,电荷,轨道和晶格参数是必需的。基于此,本文将讨论OER效率对电催化剂自旋构型的可能依赖性,以及公认的因素与自旋的相关性,包括晶场,配位,氧化,键合,例如电子数,电导率和磁性。希望本文能够阐明OER的基本原理,为更有效地设计能量转换电催化剂提供合理的指导。本文将讨论OER效率对电催化剂自旋构型的可能依赖性,以及公认的因素与自旋的相关性,包括晶场,配位,氧化,键合,例如电子数,电导率和磁性。希望本文能够阐明OER的基本原理,为更有效地设计能量转换电催化剂提供合理的指导。本文将讨论OER效率对电催化剂自旋构型的可能依赖性,以及公认的因素与自旋的相关性,包括晶场,配位,氧化,键合,例如电子数,电导率和磁性。希望本文能够阐明OER的基本原理,为更有效地设计能量转换电催化剂提供合理的指导。
更新日期:2020-11-24
down
wechat
bug