当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bifunctional Palladium Hydride Nanodendrite Electrocatalysts for Hydrogen Evolution Integrated with Formate Oxidation
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-10 , DOI: 10.1021/acsami.0c22106 Hui-Ying Sun 1 , Yu Ding 1 , Ya-Qi Yue 1 , Qi Xue 1 , Fu-Min Li 1 , Jia-Xing Jiang 1 , Pei Chen 1 , Yu Chen 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-10 , DOI: 10.1021/acsami.0c22106 Hui-Ying Sun 1 , Yu Ding 1 , Ya-Qi Yue 1 , Qi Xue 1 , Fu-Min Li 1 , Jia-Xing Jiang 1 , Pei Chen 1 , Yu Chen 1
Affiliation
The rational design of advanced electrocatalysts and energy-saving electrolysis strategies is highly desirable for achieving high-efficiency electrochemical H2 generation yet challenging. In this work, we report highly branched Pd hydride nanodendrites (PdH-NDs) formed by a very facial solvothermal method and a succedent chemical H intercalation method in N,N-dimethylformamide. The electrocatalytic performance of PdH-NDs is experimentally and theoretically correlated with the morphology and composition, which has demonstrated substantially enhanced electrochemical activity and stability for formate oxidation reaction and hydrogen evolution reaction in alkaline electrolyte compared with Pd nanodendrites. Density functional theory calculations suggest a downshift of the Pd d-band center of PdH-NDs due to the dominant Pd–H ligand effects that weaken the binding energies of the intermediate catalytic species and toxic carbon monoxide. The asymmetric formate electrolyzer based on bifunctional PdH-ND electrocatalysts is first constructed, which only requires a low voltage of 0.54 V at 10 mA cm–2 for continuous H2 generation. This study reveals significant insights about the morphology/composition-performance relationship for palladium hydrides with bifunctional electroactivity.
中文翻译:
双官能钯氢化物纳米枝晶电催化析氢与甲酸根合反应
对于实现高效电化学H 2生成但具有挑战性而言,非常需要先进的电催化剂的合理设计和节能的电解策略。在这项工作中,我们报告了通过非常表面的溶剂热法和成功的化学H嵌入法在N,N中形成的高度支化的Pd氢化物纳米枝晶(PdH-NDs)。-二甲基甲酰胺。PdH-NDs的电催化性能在实验和理论上与形态和组成相关,与Pd纳米树枝晶相比,PdH-NDs在碱性电解液中的甲酸氧化反应和氢生成反应具有显着增强的电化学活性和稳定性。密度泛函理论计算表明,由于主要的Pd-H配体效应削弱了中间催化物质和有毒一氧化碳的结合能,因此PdH-NDs的Pd d能谱中心发生了下移。首先构建了基于双功能PdH-ND电催化剂的不对称甲酸电解槽,对于连续的H 2,仅需10 mA cm –2的0.54 V低压即可。一代。这项研究揭示了具有双功能电活性的氢化钯的形态/组成-性能关系的重要见解。
更新日期:2021-03-24
中文翻译:
双官能钯氢化物纳米枝晶电催化析氢与甲酸根合反应
对于实现高效电化学H 2生成但具有挑战性而言,非常需要先进的电催化剂的合理设计和节能的电解策略。在这项工作中,我们报告了通过非常表面的溶剂热法和成功的化学H嵌入法在N,N中形成的高度支化的Pd氢化物纳米枝晶(PdH-NDs)。-二甲基甲酰胺。PdH-NDs的电催化性能在实验和理论上与形态和组成相关,与Pd纳米树枝晶相比,PdH-NDs在碱性电解液中的甲酸氧化反应和氢生成反应具有显着增强的电化学活性和稳定性。密度泛函理论计算表明,由于主要的Pd-H配体效应削弱了中间催化物质和有毒一氧化碳的结合能,因此PdH-NDs的Pd d能谱中心发生了下移。首先构建了基于双功能PdH-ND电催化剂的不对称甲酸电解槽,对于连续的H 2,仅需10 mA cm –2的0.54 V低压即可。一代。这项研究揭示了具有双功能电活性的氢化钯的形态/组成-性能关系的重要见解。