当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrochemical Injection Oxygen Vacancies in Layered Ca2Mn3O8 for Boosting Zinc-Ion Storage
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-09 , DOI: 10.1021/acsami.1c01405 Lipeng Wang 1, 2 , Ziyi Cao 1, 2 , Peiyuan Zhuang 1 , Jiaxin Li 3 , Hang Chu 1 , Zhuolin Ye 1, 2 , Dongxiao Xu 1, 2 , Hong Zhang 1, 2 , Jianfeng Shen 1 , Mingxin Ye 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-09 , DOI: 10.1021/acsami.1c01405 Lipeng Wang 1, 2 , Ziyi Cao 1, 2 , Peiyuan Zhuang 1 , Jiaxin Li 3 , Hang Chu 1 , Zhuolin Ye 1, 2 , Dongxiao Xu 1, 2 , Hong Zhang 1, 2 , Jianfeng Shen 1 , Mingxin Ye 1
Affiliation
Manganese-based compounds have emerged as attractive cathode materials for zinc-ion batteries owing to their high operating voltage, large specific capacity, and no pollution. However, the structural collapse and sluggish kinetics of manganese-based compounds are major obstacles that hinder their practical applications. Here, a kind of novel layered Ca2Mn3O8 with a low ion diffusion barrier and high structural stability has been achieved through an electrochemical charging process with in situ injecting oxygen vacancies. This greatly increases the electrochemical active area and improves the Zn ions diffusion coefficient by 2 orders of magnitude, which significantly enhances the reaction kinetics, pseudocapacitance properties, and capacity. As a result, the cathode containing oxygen vacancies present an impressive reversible capacity of 368 mAh g–1, an unprecedented energy density of 512 Wh kg–1, and superior capacity retention of 92.3% at a high current density of 5 A g–1 after 3000 cycles. This work unveils an effective method for vacancy regulation of electrode materials, paving a new way to improve the electrochemical performance of zinc-ion batteries.
中文翻译:
Ca 2 Mn 3 O 8层中的电化学注入氧空位,以促进锌离子存储
锰基化合物因其高工作电压,大比容量且无污染而成为吸引人的锌离子电池正极材料。但是,锰基化合物的结构崩溃和动力学缓慢是阻碍其实际应用的主要障碍。在这里,一种新型的层状Ca 2 Mn 3 O 8通过原位注入氧空位的电化学充电过程,实现了具有低离子扩散势垒和高结构稳定性的材料。这大大增加了电化学活性面积,并使Zn离子扩散系数提高了2个数量级,从而显着提高了反应动力学,拟电容特性和容量。结果,含氧空位的阴极具有令人印象深刻的368 mAh g –1的可逆容量,前所未有的512 Wh kg –1的能量密度以及在5 A g –1的高电流密度下卓越的容量保持率92.3%经过3000次循环。这项工作揭示了一种有效的电极材料空位调节方法,为改善锌离子电池的电化学性能开辟了一条新途径。
更新日期:2021-03-24
中文翻译:
Ca 2 Mn 3 O 8层中的电化学注入氧空位,以促进锌离子存储
锰基化合物因其高工作电压,大比容量且无污染而成为吸引人的锌离子电池正极材料。但是,锰基化合物的结构崩溃和动力学缓慢是阻碍其实际应用的主要障碍。在这里,一种新型的层状Ca 2 Mn 3 O 8通过原位注入氧空位的电化学充电过程,实现了具有低离子扩散势垒和高结构稳定性的材料。这大大增加了电化学活性面积,并使Zn离子扩散系数提高了2个数量级,从而显着提高了反应动力学,拟电容特性和容量。结果,含氧空位的阴极具有令人印象深刻的368 mAh g –1的可逆容量,前所未有的512 Wh kg –1的能量密度以及在5 A g –1的高电流密度下卓越的容量保持率92.3%经过3000次循环。这项工作揭示了一种有效的电极材料空位调节方法,为改善锌离子电池的电化学性能开辟了一条新途径。