当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multichannel Electron Transmission and Fluorescence Resonance Energy Transfer in In2S3/Au/rGO Composite for CO2 Photoreduction
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-08 , DOI: 10.1021/acsami.0c18809 Xin Li 1 , Yanan Wei 1 , Changchang Ma 1 , Haopeng Jiang 1 , Ming Gao 1 , Simin Zhang 1 , Wenkai Liu 1 , Pengwei Huo 1 , Huiqin Wang 2 , Lili Wang 3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-03-08 , DOI: 10.1021/acsami.0c18809 Xin Li 1 , Yanan Wei 1 , Changchang Ma 1 , Haopeng Jiang 1 , Ming Gao 1 , Simin Zhang 1 , Wenkai Liu 1 , Pengwei Huo 1 , Huiqin Wang 2 , Lili Wang 3
Affiliation
Efficient electron transmission is an important step in the process of CO2 photoreduction. In this paper, a multi-interface-contacted In2S3/Au/reduced graphene oxide (rGO) photocatalyst with the fluorescence resonance energy transfer (FRET) mechanism has been successfully prepared by the solvothermal, self-assembly, and hydrothermal reduction processes. Photocatalytic CO2 reduction experiments showed that the In2S3/Au/rGO (IAr-3) composite exhibited excellent photoreduction performance and photocatalytic stability. The yields of CO and CH4 obtained after the photoreduction process with IAr-3 as the catalyst were around 4 and 6 times higher than those of pure In2S3, respectively. Photoelectrochemical analysis showed that the multi-interface contact and FRET mechanism greatly improved the generation, transmission, and separation efficiency of carriers photogenerated within the photocatalyst. In situ FTIR test was applied to analyze the photocatalytic CO2 reduction process. 13C isotope tracer test confirmed that the carbon source of CO and CH4 was the CO2 molecules in the photoreduction process rather than the decomposition of catalyst or TEOA. A potential enhanced photocatalytic mechanism has been discussed in total.
中文翻译:
In 2 S 3 / Au / rGO复合材料中CO 2光还原的多通道电子传输和荧光共振能量转移
有效的电子传输是CO 2光还原过程中的重要步骤。通过溶剂热,自组装和水热还原工艺成功地制备了具有荧光共振能量转移(FRET)机理的多界面接触In 2 S 3 / Au /还原氧化石墨烯(rGO)光催化剂。 。光催化还原CO 2的实验表明,In 2 S 3 / Au / rGO(IAr-3)复合材料表现出优异的光还原性能和光催化稳定性。CO和CH 4的产率用IAr-3作为催化剂进行光还原后得到的化合物分别比纯In 2 S 3高约4倍和6倍。光电化学分析表明,多界面接触和FRET机理极大地提高了光催化剂内光生载流子的产生,透射和分离效率。采用原位FTIR试验分析了光催化还原CO 2的过程。13 C同位素示踪测试证实CO和CH 4的碳源为CO 2分子在光还原过程中,而不是催化剂或TEOA分解。总体上已经讨论了潜在的增强的光催化机理。
更新日期:2021-03-17
中文翻译:
In 2 S 3 / Au / rGO复合材料中CO 2光还原的多通道电子传输和荧光共振能量转移
有效的电子传输是CO 2光还原过程中的重要步骤。通过溶剂热,自组装和水热还原工艺成功地制备了具有荧光共振能量转移(FRET)机理的多界面接触In 2 S 3 / Au /还原氧化石墨烯(rGO)光催化剂。 。光催化还原CO 2的实验表明,In 2 S 3 / Au / rGO(IAr-3)复合材料表现出优异的光还原性能和光催化稳定性。CO和CH 4的产率用IAr-3作为催化剂进行光还原后得到的化合物分别比纯In 2 S 3高约4倍和6倍。光电化学分析表明,多界面接触和FRET机理极大地提高了光催化剂内光生载流子的产生,透射和分离效率。采用原位FTIR试验分析了光催化还原CO 2的过程。13 C同位素示踪测试证实CO和CH 4的碳源为CO 2分子在光还原过程中,而不是催化剂或TEOA分解。总体上已经讨论了潜在的增强的光催化机理。