当前位置:
X-MOL 学术
›
Comput. Speech Lang
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
说话人自动发音异常语音清晰度评估系统
Computer Speech & Language ( IF 3.1 ) Pub Date : 2021-03-06 , DOI: 10.1016/j.csl.2021.101213 Ayush Tripathi , Swapnil Bhosale , Sunil Kumar Kopparapu
"点击查看英文标题和摘要"
更新日期:2021-03-21
Computer Speech & Language ( IF 3.1 ) Pub Date : 2021-03-06 , DOI: 10.1016/j.csl.2021.101213 Ayush Tripathi , Swapnil Bhosale , Sunil Kumar Kopparapu
构音障碍是妨碍个人控制在语音传递中起主要作用的肌肉的能力的病症。失去对有助于嘴唇,声带,舌头和diaphragm肌运动的肌肉的精细控制会导致异常的语音传递。可以通过分析个人讲话的清晰度来评估构音障碍的严重程度。持续的清晰度评估可帮助言语病理学家不仅研究药物的影响,还使他们能够计划个性化的治疗。如果清晰度评估系统可靠,自动且易于(a)患者接受和(b)临床医生解释,那么它将极大地帮助临床医生。构造异常数据的缺乏导致说话者依赖性的发展自动清晰度评估系统,要求患者说出大量话语。在本文中,我们提出(a)一种成本最小化的程序,以选择需要困难的说话者的最佳(少量)话语数量;(b)四种不同的独立于说话者的清晰度评估系统,要求患者说出以下内容:单词数量少,并且(c)评估分数接近语音语言病理学家(SLP)可以涉及的感知分数。从可用性的角度来看,患者需要说出少量话语并且分数与SLP相关,这对构音障碍患者和临床医生都有利。
"点击查看英文标题和摘要"