当前位置:
X-MOL 学术
›
IEEE Trans. Autom. Control
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boundary Feedback Stabilization of a Class of Coupled Hyperbolic Equations With Nonlocal Terms
IEEE Transactions on Automatic Control ( IF 6.2 ) Pub Date : 2017-10-30 , DOI: 10.1109/tac.2017.2767824 Lingling Su , Jun-Min Wang , Miroslav Krstic
IEEE Transactions on Automatic Control ( IF 6.2 ) Pub Date : 2017-10-30 , DOI: 10.1109/tac.2017.2767824 Lingling Su , Jun-Min Wang , Miroslav Krstic
This paper solves the problem of boundary feedback stabilization of a class of coupled ordinary differential equations_hyperbolic equations with boundary, trace, and integral nonlocal terms. Using the backstepping approach, the controller is designed by formulating an integral operator, whose kernel is required to satisfy a coupled hyperbolic partial integral differential equation. By applying the method of successive approximations, the kernel's well-posedness is given. We prove the exponential stability of the origin of the system in a suitable Hilbert space. Moreover, a wave system with nonlocal terms is stabilized by applying the above result.
中文翻译:
一类非局部项耦合双曲方程的边界反馈镇定
本文解决了一类带有边界、迹和积分非局部项的耦合常微分方程_双曲方程的边界反馈镇定问题。采用反步法,通过制定积分算子来设计控制器,要求其核满足耦合双曲偏积分微分方程。通过应用逐次逼近的方法,给出了核的适定性。我们证明了系统原点在合适的希尔伯特空间中的指数稳定性。此外,通过应用上述结果,具有非局部项的波动系统得以稳定。
更新日期:2017-10-30
中文翻译:
一类非局部项耦合双曲方程的边界反馈镇定
本文解决了一类带有边界、迹和积分非局部项的耦合常微分方程_双曲方程的边界反馈镇定问题。采用反步法,通过制定积分算子来设计控制器,要求其核满足耦合双曲偏积分微分方程。通过应用逐次逼近的方法,给出了核的适定性。我们证明了系统原点在合适的希尔伯特空间中的指数稳定性。此外,通过应用上述结果,具有非局部项的波动系统得以稳定。