当前位置: X-MOL 学术IEEE Trans. Autom. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Uncalibrated Visual Servo Method Based on Projective Homography
IEEE Transactions on Automation Science and Engineering ( IF 5.9 ) Pub Date : 2018-04-01 , DOI: 10.1109/tase.2017.2702195
Zeyu Gong , Bo Tao , Hua Yang , Zhouping Yin , Han Ding

An uncalibrated visual servo method based on projective homography, denoted as Projective Homography based Uncalibrated Visual Servoing (PHUVS), is proposed in this paper, in which a novel task function based on the element of projective homography is devised to realize visual servo without a prior knowledge of the camera intrinsic parameters and hand-eye relationships. The main advantage of this method is that it is not only suitable for totally uncalibrated scenarios but also cheap in computation costs when compared with classical image-based uncalibrated visual servoing methods. Numerical experiments are performed and the results confirm that the new approach is capable of both static positioning and dynamic tracking tasks, and presents competitive computational efficiency and accuracy performance. Note to Practitioners—Vision guided robot has been widely used in industries. However the industrial state-of-art robot visual servo systems usually require system calibration, including camera calibration, hand-eye calibration, and robot calibration. These calibration process are time consuming and requires some expertise, which is rare for ordinary workers. Moreover, when hand-eye configuration changed due to certain reasons such as adjustment of production line layout or displacement due to machining force or switch of robot end effector, the calibrated parameters are no longer accurate. This paper offers a plug and play approach for eye-in-hand robot visual servo tasks. When a robot-camera system is set up, there is no need for the operator to calibrate the system. With reference (goal) image and the current images obtained by the moving camera, the robot can autonomously achieve the goal pose which is described simply by the reference camera. With our novel task function, the computation cost is reduced, which will benefit the real-time application. The accuracy and some dynamic performance in both static positioning and dynamic target tracking are evaluated by robotic toolbox. This approach has the potential to improve the flexibility and robustness of robot system in robotic manipulation tasks such as assemble and painting, or robotic machining tasks such as matching the origin point of operating trajectory in large part manufacturing. Furthermore, this approach is generic, and can be extended to mobile robot visual servo control tasks.

中文翻译:

基于投影全息的非标定视觉伺服方法

提出了一种基于投影单应性的非标定视觉伺服方法,称为基于投影单应性的非标定视觉伺服(PHUVS),其中设计了一种基于投影单应性元素的新型任务函数,无需事先实现即可实现视觉伺服。相机内在参数和手眼关系的知识。与传统的基于图像的未校准视觉伺服方法相比,该方法的主要优点是它不仅适用于完全未校准的场景,而且计算成本低廉。进行了数值实验,结果证实了该新方法能够同时进行静态定位和动态跟踪任务,并具有竞争性的计算效率和准确性。从业者注意—视觉引导机器人已在行业中广泛使用。但是,工业级的机器人视觉伺服系统通常需要系统校准,包括相机校准,手眼校准和机器人校准。这些校准过程很耗时,并且需要一些专业知识,这对于普通工人来说是很少的。此外,当由于某些原因(例如生产线布局的调整或由于机械力或机器人末端执行器的切换而导致的位移)而导致手眼配置发生变化时,校准后的参数将不再准确。本文提供了一种即插即用的方法来处理手头机器人的视觉伺服任务。设置机器人摄像机系统后,操作员无需校准系统。借助参考(目标)图像和移动摄像机获得的当前图像,机器人可以自主实现目标姿势,该姿势由参考摄像机简单描述。利用我们新颖的任务功能,降低了计算成本,这将有利于实时应用。机器人工具箱评估了静态定位和动态目标跟踪的准确性和动态性能。这种方法有可能提高机器人系统在组装和喷漆之类的机器人操纵任务或在大型零件制造中诸如匹配操作轨迹起点的机器人加工任务中的灵活性和鲁棒性。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。机器人可以自主实现目标姿势,这可以简单地由参考摄像机来描述。利用我们新颖的任务功能,降低了计算成本,这将有利于实时应用。机器人工具箱评估了静态定位和动态目标跟踪的准确性和动态性能。这种方法有可能在机器人操纵任务(例如组装和涂漆)或机器人加工任务(例如在大型零件制造中匹配操作轨迹的起点)时提高机器人系统的灵活性和鲁棒性。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。机器人可以自主实现目标姿势,这可以简单地由参考摄像机来描述。利用我们新颖的任务功能,降低了计算成本,这将有利于实时应用。机器人工具箱评估了静态定位和动态目标跟踪的准确性和动态性能。这种方法有可能提高机器人系统在组装和喷漆之类的机器人操纵任务或在大型零件制造中诸如匹配操作轨迹起点的机器人加工任务中的灵活性和鲁棒性。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。机器人工具箱评估了静态定位和动态目标跟踪的准确性和动态性能。这种方法有可能提高机器人系统在组装和喷漆之类的机器人操纵任务或在大型零件制造中诸如匹配操作轨迹起点的机器人加工任务中的灵活性和鲁棒性。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。机器人工具箱评估了静态定位和动态目标跟踪的准确性和动态性能。这种方法有可能在机器人操纵任务(例如组装和涂漆)或机器人加工任务(例如在大型零件制造中匹配操作轨迹的起点)时提高机器人系统的灵活性和鲁棒性。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。或机器人加工任务,例如在大型零件制造中匹配工作轨迹的起点。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。或机器人加工任务,例如在大型零件制造中匹配工作轨迹的起点。此外,这种方法是通用的,可以扩展到移动机器人视觉伺服控制任务。
更新日期:2018-04-01
down
wechat
bug