当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Colossal Spin Splitting in the Monolayer of the Collinear Antiferromagnet MnF2
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2021-03-03 , DOI: 10.1021/acs.jpclett.1c00282 Sergei A. Egorov 1, 2 , Robert A. Evarestov 3
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2021-03-03 , DOI: 10.1021/acs.jpclett.1c00282 Sergei A. Egorov 1, 2 , Robert A. Evarestov 3
Affiliation
In this Letter we report on the colossal spin splitting (on the order of several electronvolts) in the collinear antiferromagnetic (AFM) MnF2 (110) monolayer, which we obtained from first-principles calculations and explain in terms of group-theoretical analysis. This Pekar–Rashba AFM-induced spin splitting with a magnetic mechanism does not require the presence of spin–orbit coupling such as with a traditional Rashba–Dresselhaus electric mechanism. Furthermore, it was observed for all wave vectors, including high-symmetry points of the two-dimensional (2D) Brillouin zone. This is in contrast to recently reported AFM-induced spin splitting in the bulk structure of MnF2, which was both smaller by at least an order of magnitude and required to vanish by symmetry at several high-symmetry points and directions of the three-dimensional Brillouin zone. The crucial part of our group-theoretical analysis is the determination of the magnetic layer group for the monolayer structure for which we propose a simple and generic procedure.
中文翻译:
共线反铁磁体MnF 2单层中的巨大自旋分裂
在这封信中,我们报告了共线反铁磁(AFM)MnF 2(110)单层中的巨大自旋分裂(在几个电子伏特的数量级上),这是我们从第一性原理计算中获得的,并根据基团理论分析进行了解释。这种Pekar–Rashba AFM诱导的自旋分裂具有磁性机制,不需要像传统的Rashba–Dresselhaus电动机制那样存在自旋-轨道耦合。此外,还观察到了所有波矢,包括二维(2D)布里渊区的高对称点。这与最近报道的AFM诱导的MnF 2本体结构中的自旋分裂相反,它们都至少缩小了一个数量级,并且需要在三维布里渊区的几个高对称点和方向上通过对称消失。组理论分析的关键部分是确定单层结构的磁性层组,为此我们提出了一个简单而通用的程序。
更新日期:2021-03-11
中文翻译:
共线反铁磁体MnF 2单层中的巨大自旋分裂
在这封信中,我们报告了共线反铁磁(AFM)MnF 2(110)单层中的巨大自旋分裂(在几个电子伏特的数量级上),这是我们从第一性原理计算中获得的,并根据基团理论分析进行了解释。这种Pekar–Rashba AFM诱导的自旋分裂具有磁性机制,不需要像传统的Rashba–Dresselhaus电动机制那样存在自旋-轨道耦合。此外,还观察到了所有波矢,包括二维(2D)布里渊区的高对称点。这与最近报道的AFM诱导的MnF 2本体结构中的自旋分裂相反,它们都至少缩小了一个数量级,并且需要在三维布里渊区的几个高对称点和方向上通过对称消失。组理论分析的关键部分是确定单层结构的磁性层组,为此我们提出了一个简单而通用的程序。