当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compatibility of Biologically Derivable Alcohols, Alkanes, Esters, Ketones, and an Ether as Diesel Blendstocks with Fuel System Elastomers
Energy & Fuels ( IF 5.2 ) Pub Date : 2021-03-02 , DOI: 10.1021/acs.energyfuels.0c04357
Michael D. Kass 1 , Christopher J. Janke 1 , Raynella Maggie Connatser 2 , Samuel Lewis 1
Affiliation  

The compatibility of 11 bioderivable diesel blendstocks with 17 elastomer materials common to fuel storage, dispensing, and delivery systems was evaluated though volume and hardness measurements. The blendstocks included two alcohols (1-octanol and 1-nonanol), two acid esters (methyl decanoate and hexyl hexanoate), tri(propylene glycol) methyl ether (TPM), butylcyclohexane, two ketones (2-nonanone and 2-pentanone), biodiesel, and renewable diesel. Each blendstock was blended with diesel in concentrations of 0, 10, 20, and 30 wt %. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one each of fluorosilicone, neoprene, polyurethane, styrene butadiene rubber (SBR), hydrogenated acrylonitrile butadiene rubber (HNBR), a blend of NBR and PVC (OZO), epichlorohydrin/ethylene oxide (ECO), ethylene propylene diene monomer (EPDM), and silicone. Specimens of each elastomer material were immersed in the test fuels for a period of 4 weeks and measured for volume and hardness. Afterward, they were dried at 60 °C for 20 h and remeasured. The results showed that the alkanes, esters, and alcohols were suitable with many of the elastomers. For some materials, such as neoprene, these blendstocks improved the compatibility compared to neat diesel. In contrast, the ketones and TPM produced unsuitable volume expansion (>30%) and softening in many of the elastomers including the high-performance fluoroelastomers. Analysis of the results showed that the swelling behavior is predominantly due to polarity of the elastomer and test fuels.

中文翻译:

生物衍生醇,烷烃,酯,酮和醚作为柴油调合油与燃料系统弹性体的相容性

通过体积和硬度测量,评估了11种生物衍生柴油混合原料与17种弹性体材料在燃料存储,分配和输送系统中常见的相容性。混合原料包括两种醇(1-辛醇和1-壬醇),两种酸酯(癸酸甲酯和己酸己酯),三(丙二醇)甲基醚(TPM),丁基环己烷,两种酮(2-壬酮和2-戊酮) ,生物柴油和可再生柴油。将每种混合原料与浓度为0、10、20和30 wt%的柴油混合。弹性体包括两种碳氟化合物,六种丙烯腈丁二烯橡胶(NBR),以及氟硅橡胶,氯丁橡胶,聚氨酯,丁苯橡胶(SBR),氢化丙烯腈丁二烯橡胶(HNBR),NBR和PVC的混合物(OZO),环氧氯丙烷中的一种/环氧乙烷(ECO),乙烯丙烯二烯单体(EPDM)和有机硅。将每种弹性体材料的样品浸入测试燃料中4周,并测量其体积和硬度。之后,将它们在60°C下干燥20小时,然后重新测量。结果表明,烷烃,酯和醇适用于许多弹性体。对于某些材料,例如氯丁橡胶,与纯柴油相比,这些混合原料改善了相容性。相反,酮和TPM在包括高性能含氟弹性体在内的许多弹性体中产生不合适的体积膨胀(> 30%)和软化。结果分析表明,溶胀行为主要归因于弹性体和测试燃料的极性。将每种弹性体材料的样品浸入测试燃料中4周,并测量其体积和硬度。之后,将它们在60°C下干燥20小时,然后重新测量。结果表明,烷烃,酯和醇适用于许多弹性体。对于某些材料,例如氯丁橡胶,与纯柴油相比,这些混合原料改善了相容性。相反,酮和TPM在包括高性能含氟弹性体在内的许多弹性体中产生不合适的体积膨胀(> 30%)和软化。结果分析表明,溶胀行为主要归因于弹性体和测试燃料的极性。将每种弹性体材料的样品浸入测试燃料中4周,并测量其体积和硬度。之后,将它们在60°C下干燥20小时,然后重新测量。结果表明,烷烃,酯和醇适用于许多弹性体。对于某些材料,例如氯丁橡胶,与纯柴油相比,这些混合原料改善了相容性。相反,酮和TPM在包括高性能含氟弹性体在内的许多弹性体中产生不合适的体积膨胀(> 30%)和软化。结果分析表明,溶胀行为主要归因于弹性体和测试燃料的极性。醇和醇适合许多弹性体。对于某些材料,例如氯丁橡胶,与纯柴油相比,这些混合原料改善了相容性。相反,酮和TPM在包括高性能含氟弹性体在内的许多弹性体中产生不合适的体积膨胀(> 30%)和软化。结果分析表明,溶胀行为主要归因于弹性体和测试燃料的极性。醇和醇适合许多弹性体。对于某些材料,例如氯丁橡胶,与纯柴油相比,这些混合原料改善了相容性。相反,酮和TPM在包括高性能含氟弹性体在内的许多弹性体中产生不合适的体积膨胀(> 30%)和软化。结果分析表明,溶胀行为主要归因于弹性体和测试燃料的极性。
更新日期:2021-03-18
down
wechat
bug