Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bulk-Effect-Free Method for Binding Kinetic Measurements Enabling Small-Molecule Affinity Characterization
ACS Omega ( IF 3.7 ) Pub Date : 2021-03-03 , DOI: 10.1021/acsomega.0c05994 Allison M Marn 1 , Elisa Chiodi 1 , M Selim Ünlü 1, 2
ACS Omega ( IF 3.7 ) Pub Date : 2021-03-03 , DOI: 10.1021/acsomega.0c05994 Allison M Marn 1 , Elisa Chiodi 1 , M Selim Ünlü 1, 2
Affiliation
Optical technologies for label-free detection are an attractive solution for monitoring molecular binding kinetics; however, these techniques measure the changes in the refractive index, making it difficult to distinguish surface binding from a change in the refractive index of the analyte solution in the proximity of the sensor surface. The solution refractive index changes, due to solvents, temperature changes, or pH variations, can create an unwanted background signal known as the bulk effect. Technologies such as biolayer interferometry and surface plasmon resonance offer no bulk-effect compensation, or they alternatively offer a reference channel to correct in postprocessing. Here, we present a virtually bulk-effect-free method, without a reference channel or any computational correction, for measuring kinetic binding using the interferometric reflectance imaging sensor (IRIS), an optical label-free biomolecular interaction analysis tool. Dynamic spectral illumination engineering, through tailored LED contributions, is combined with the IRIS technology to minimize the bulk effect, with the potential to enable kinetic measurements of a broader range of analytes. We demonstrate that the deviation in the reflectivity signal is reduced to ∼8 × 10–6 for a solution change from phosphate-buffered saline (PBS) (n = 1.335) to 1% dimethyl sulfoxide (DMSO) in PBS (n = 1.336). As a proof of concept, we applied the method to a biotin–streptavidin interaction, where biotin (MW = 244.3 Da) was dissolved at a final concentration of 1 μM in a 1% solution of DMSO in PBS and flowed over immobilized streptavidin. Clear binding results were obtained without a reference channel or any computational correction.
中文翻译:
用于进行小分子亲和力表征的结合动力学测量的无体积效应方法
用于无标记检测的光学技术是监测分子结合动力学的一种有吸引力的解决方案;然而,这些技术测量折射率的变化,使得难以区分表面结合和传感器表面附近分析物溶液的折射率变化。由于溶剂、温度变化或 pH 值变化而导致的溶液折射率变化会产生不需要的背景信号,称为体效应。生物层干涉测量和表面等离子体共振等技术不提供体效应补偿,或者它们提供参考通道以在后处理中进行校正。在这里,我们提出了一种几乎无体效应的方法,无需参考通道或任何计算校正,使用干涉反射成像传感器(IRIS)(一种光学无标记生物分子相互作用分析工具)测量动力学结合。动态光谱照明工程通过定制的 LED 贡献与 IRIS 技术相结合,以最大限度地减少体效应,并有可能实现更广泛的分析物的动力学测量。我们证明,当溶液从磷酸盐缓冲盐水 (PBS) ( n = 1.335) 更改为 PBS 中的 1% 二甲基亚砜 (DMSO) ( n = 1.336) 时,反射率信号的偏差减少至 ∼8 × 10 –6 。作为概念证明,我们将该方法应用于生物素-链霉亲和素相互作用,其中生物素(MW = 244.3 Da)以 1 μM 的终浓度溶解在 1% DMSO 的 PBS 溶液中,并流过固定化的链霉亲和素。无需参考通道或任何计算校正即可获得清晰的结合结果。
更新日期:2021-03-16
中文翻译:
用于进行小分子亲和力表征的结合动力学测量的无体积效应方法
用于无标记检测的光学技术是监测分子结合动力学的一种有吸引力的解决方案;然而,这些技术测量折射率的变化,使得难以区分表面结合和传感器表面附近分析物溶液的折射率变化。由于溶剂、温度变化或 pH 值变化而导致的溶液折射率变化会产生不需要的背景信号,称为体效应。生物层干涉测量和表面等离子体共振等技术不提供体效应补偿,或者它们提供参考通道以在后处理中进行校正。在这里,我们提出了一种几乎无体效应的方法,无需参考通道或任何计算校正,使用干涉反射成像传感器(IRIS)(一种光学无标记生物分子相互作用分析工具)测量动力学结合。动态光谱照明工程通过定制的 LED 贡献与 IRIS 技术相结合,以最大限度地减少体效应,并有可能实现更广泛的分析物的动力学测量。我们证明,当溶液从磷酸盐缓冲盐水 (PBS) ( n = 1.335) 更改为 PBS 中的 1% 二甲基亚砜 (DMSO) ( n = 1.336) 时,反射率信号的偏差减少至 ∼8 × 10 –6 。作为概念证明,我们将该方法应用于生物素-链霉亲和素相互作用,其中生物素(MW = 244.3 Da)以 1 μM 的终浓度溶解在 1% DMSO 的 PBS 溶液中,并流过固定化的链霉亲和素。无需参考通道或任何计算校正即可获得清晰的结合结果。