当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Salt‐in‐Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-03-03 , DOI: 10.1002/adfm.202010602 Lin Fu 1 , Xiancheng Wang 1 , Li Wang 2 , Mintao Wan 1 , Yuanjian Li 1 , Zhao Cai 1 , Yuchen Tan 1 , Guocheng Li 1 , Renming Zhan 1 , Zhi Wei Seh 3 , Yongming Sun 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-03-03 , DOI: 10.1002/adfm.202010602 Lin Fu 1 , Xiancheng Wang 1 , Li Wang 2 , Mintao Wan 1 , Yuanjian Li 1 , Zhao Cai 1 , Yuchen Tan 1 , Guocheng Li 1 , Renming Zhan 1 , Zhi Wei Seh 3 , Yongming Sun 1
Affiliation
Metallic lithium (Li) is the ultimate anode candidate for high‐energy‐density rechargeable batteries. However, its practical application is hindered by serious problems, including uncontrolled dendritic Li growth and undesired side reactions. In this study a concept of “salt‐in‐metal” is proposed, and a Li/LiNO3 composite foil is constructed such that a classic electrolyte additive, LiNO3, is embedded successfully into the bulk structure of metallic Li by a facile mechanical kneading approach. The LiNO3 reacts with metallic Li to generate Li+ conductive species (e.g., Li3N and LiNxOy) over the entire electrode. These derivatives afford a stable solid electrolyte interphase (SEI) and effectively regulate the uniformity of the nucleation/growth of Li on initial plating, featuring a low nucleation energy barrier and large crystalline size without mossy morphology. Importantly, these derivatives combined with LiNO3 can in‐situ repair the damaged SEI from the large volume change during Li plating/stripping, enabling a stable electrode‐electrolyte interface and suppressing side reactions between metallic Li and electrolyte. Stable cycling with a high capacity retention of 93.1% after 100 cycles is obtained for full cells consisting of high‐loading LiCoO2 cathode (≈20 mg cm−2) and composite metallic Li anode with 25 wt% LiNO3 under a lean electrolyte condition (≈12 µL) at 0.5 C.
中文翻译:
金属盐阳极:稳定固体电解质相间,以延长电池循环时间
金属锂(Li)是高能量密度可充电电池的最终阳极选择。但是,其实际应用受到严重问题的阻碍,这些问题包括不受控制的树枝状Li的生长和不希望的副反应。在这项研究中,提出了“金属盐”的概念,并构造了Li / LiNO 3复合箔,从而通过一种简便的机械方法将经典的电解质添加剂LiNO 3成功地嵌入到金属Li的本体结构中。揉法。LiNO 3与金属Li反应生成Li +导电物质(例如Li 3 N和LiN x O y)覆盖整个电极。这些衍生物可提供稳定的固体电解质中间相(SEI),并有效地调节初始镀覆时Li的成核/生长的均匀性,其特征在于低的成核能垒和大的晶体尺寸而没有生苔的形态。重要的是,这些衍生物与LiNO 3结合可以原位修复受损的SEI,这是由于在Li镀层/剥离过程中发生的大量体积变化所致,从而实现了稳定的电极-电解质界面并抑制了金属Li和电解质之间的副反应。对于由高负载LiCoO 2阴极(≈20mg cm -2)和含25 wt%LiNO 3的复合金属Li阳极组成的完整电池,在100次循环后可获得93.1%的高容量保持率的稳定循环 在0.5 C的稀电解液条件下(≈12µL)。
更新日期:2021-05-10
中文翻译:
金属盐阳极:稳定固体电解质相间,以延长电池循环时间
金属锂(Li)是高能量密度可充电电池的最终阳极选择。但是,其实际应用受到严重问题的阻碍,这些问题包括不受控制的树枝状Li的生长和不希望的副反应。在这项研究中,提出了“金属盐”的概念,并构造了Li / LiNO 3复合箔,从而通过一种简便的机械方法将经典的电解质添加剂LiNO 3成功地嵌入到金属Li的本体结构中。揉法。LiNO 3与金属Li反应生成Li +导电物质(例如Li 3 N和LiN x O y)覆盖整个电极。这些衍生物可提供稳定的固体电解质中间相(SEI),并有效地调节初始镀覆时Li的成核/生长的均匀性,其特征在于低的成核能垒和大的晶体尺寸而没有生苔的形态。重要的是,这些衍生物与LiNO 3结合可以原位修复受损的SEI,这是由于在Li镀层/剥离过程中发生的大量体积变化所致,从而实现了稳定的电极-电解质界面并抑制了金属Li和电解质之间的副反应。对于由高负载LiCoO 2阴极(≈20mg cm -2)和含25 wt%LiNO 3的复合金属Li阳极组成的完整电池,在100次循环后可获得93.1%的高容量保持率的稳定循环 在0.5 C的稀电解液条件下(≈12µL)。