当前位置: X-MOL 学术 › Catalysts › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation
Catalysts ( IF 3.52 ) Pub Date : 2019-04-12 , DOI: 10.3390/catal9040355
Marco Rabuffetti , Teodora Bavaro , Riccardo Semproli , Giulia Cattaneo , Michela Massone , Carlo F. Morelli , Giovanna Speranza , Daniela Ubiali

Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 2′-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs. Good conversions (49–67%) were achieved in all cases under screening conditions. Following this synthetic scheme, 7-methylguanine arabinoside iodide was also prepared with the purpose to synthesize the antiviral Vidarabine by a novel approach. However, in this case, neither the phosphorolysis of the sugar donor, nor the transglycosylation reaction were observed. This study was enlarged to two other ribonucleosides structurally related to Ribavirin and Tecadenoson, namely, Acadesine, or AICAR, and 2-chloro-N6-cyclopentyladenosine, or CCPA. Only the formation of CCPA was observed (52%). This study paves the way for the development of a new synthesis of the target APIs at a preparative scale. Furthermore, the screening herein reported contributes to the collection of new data about the specific substrate requirements of AhPNP.

中文翻译:

通过酶转糖基化合成利巴韦林、替卡德松和克拉屈滨

尽管迄今为止核苷化学取得了令人瞩目的进展,但核苷类似物的合成仍然是一个挑战。化学酶促合成已被证明可以克服传统核苷化学的大部分限制。来自嗜水气单胞菌 (AhPNP) 的嘌呤核苷磷酸化酶已在本文中用于通过“一锅单酶”转糖基化催化利巴韦林、Tecadenoson 和克拉屈滨的合成,即从核苷转移碳水化合物部分杂环碱基的供体。作为糖供体,合成了 7-甲基鸟苷碘化物及其 2'-脱氧对应物,并与“类嘌呤”碱基或三种选定 API 的修饰嘌呤一起孵育。在所有情况下,在筛选条件下都实现了良好的转化率 (49–67%)。按照这个合成方案,还制备了 7-甲基鸟嘌呤阿拉伯糖碘化物,目的是通过一种新方法合成抗病毒药物阿糖腺苷。然而,在这种情况下,既没有观察到糖供体的磷酸分解,也没有观察到转糖基化反应。该研究扩大到与利巴韦林和 Tecadenoson 结构相关的另外两种核糖核苷,即 Acadesine,或 AICAR,和 2-氯-N6-环戊基腺苷,或 CCPA。仅观察到 CCPA 的形成(52%)。该研究为以制备规模开发新的目标 API 合成铺平了道路。此外,本文报道的筛选有助于收集有关 AhPNP 特定底物要求的新数据。在这种情况下,既没有观察到糖供体的磷酸分解,也没有观察到转糖基化反应。该研究扩大到与利巴韦林和 Tecadenoson 结构相关的另外两种核糖核苷,即 Acadesine,或 AICAR,和 2-氯-N6-环戊基腺苷,或 CCPA。仅观察到 CCPA 的形成(52%)。该研究为以制备规模开发新的目标 API 合成铺平了道路。此外,本文报道的筛选有助于收集有关 AhPNP 特定底物要求的新数据。在这种情况下,既没有观察到糖供体的磷酸分解,也没有观察到转糖基化反应。该研究扩大到与利巴韦林和 Tecadenoson 结构相关的另外两种核糖核苷,即 Acadesine,或 AICAR,和 2-氯-N6-环戊基腺苷,或 CCPA。仅观察到 CCPA 的形成(52%)。该研究为以制备规模开发新的目标 API 合成铺平了道路。此外,本文报道的筛选有助于收集有关 AhPNP 特定底物要求的新数据。或 CCPA。仅观察到 CCPA 的形成(52%)。该研究为以制备规模开发新的目标 API 合成铺平了道路。此外,本文报道的筛选有助于收集有关 AhPNP 特定底物要求的新数据。或 CCPA。仅观察到 CCPA 的形成(52%)。该研究为以制备规模开发新的目标 API 合成铺平了道路。此外,本文报道的筛选有助于收集有关 AhPNP 特定底物要求的新数据。
更新日期:2019-04-12
down
wechat
bug