当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2021-02-26 , DOI: 10.1021/acs.jpclett.1c00267
Fan Wu 1 , Shaoqi Zhan 2 , Li Yang 1, 3 , Zhiwen Zhuo 1 , Xijun Wang 1 , Xiyu Li 1 , Yi Luo 1 , Jun Jiang 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2021-02-26 , DOI: 10.1021/acs.jpclett.1c00267
Fan Wu 1 , Shaoqi Zhan 2 , Li Yang 1, 3 , Zhiwen Zhuo 1 , Xijun Wang 1 , Xiyu Li 1 , Yi Luo 1 , Jun Jiang 1
Affiliation
![]() |
A major bottleneck of large-scale water splitting for hydrogen production is the lack of catalysts for the oxygen evolution reaction (OER) with low cost and high efficiency. In this work, we proposed an electrocatalyst of a curved carbon nanocone embedded with two TMN4 active sites (TM = transition metal) and used first-principles calculations to investigate their OER mechanisms and catalytic activities. In the particular spatial confinement of a curved nanocone, we found that the distance between intermediates adsorbed on two active sites is shorter than the distance between these two active sites. This finding can be used to enhance OER activity by distance-dependent interaction between intermediates through two different mechanisms. The first mechanism in which an O2 molecule is generated from two neighboring *O intermediates exhibits a linear activity trend, and the lowest overpotential is 0.27 V for the FeN4 system. In the second mechanism, selective stabilization of the *OOH intermediate is realized, leading to a new scaling relationship (ΔG*OOH = ΔG*OH + 3.04 eV) associated with a modified OER activity volcano (theoretical volcano apex at 0.29 V). The studied mechanisms of the spatial confinement of a carbon nanocone provide a new perspective for designing efficient OER catalysts.
中文翻译:
碳纳米锥的空间限制,用于有效的放氧反应
用于制氢的大规模水分解的主要瓶颈是缺乏低成本和高效率的用于氧释放反应(OER)的催化剂。在这项工作中,我们提出了一种嵌入有两个TMN 4活性位点(TM =过渡金属)的弯曲碳纳米锥的电催化剂,并使用第一性原理计算来研究它们的OER机理和催化活性。在弯曲纳米锥的特定空间限制中,我们发现吸附在两个活性位点上的中间体之间的距离比这两个活性位点之间的距离短。通过两个不同的机制,中间体之间的距离依赖性相互作用可将这一发现用于增强OER活性。第一个机制中O 2分子由两个相邻的* O中间体生成,表现出线性的活性趋势,FeN 4系统的最低过电势为0.27V 。在第二种机制中,实现了* OOH中间体的选择性稳定,从而导致了与经修改的OER活性火山(理论上的火山顶点为0.29 V)相关的新的比例关系(ΔG * OOH = ΔG * OH + 3.04 eV) 。碳纳米锥的空间限制机制的研究为设计高效的OER催化剂提供了新的视角。
更新日期:2021-03-11
中文翻译:

碳纳米锥的空间限制,用于有效的放氧反应
用于制氢的大规模水分解的主要瓶颈是缺乏低成本和高效率的用于氧释放反应(OER)的催化剂。在这项工作中,我们提出了一种嵌入有两个TMN 4活性位点(TM =过渡金属)的弯曲碳纳米锥的电催化剂,并使用第一性原理计算来研究它们的OER机理和催化活性。在弯曲纳米锥的特定空间限制中,我们发现吸附在两个活性位点上的中间体之间的距离比这两个活性位点之间的距离短。通过两个不同的机制,中间体之间的距离依赖性相互作用可将这一发现用于增强OER活性。第一个机制中O 2分子由两个相邻的* O中间体生成,表现出线性的活性趋势,FeN 4系统的最低过电势为0.27V 。在第二种机制中,实现了* OOH中间体的选择性稳定,从而导致了与经修改的OER活性火山(理论上的火山顶点为0.29 V)相关的新的比例关系(ΔG * OOH = ΔG * OH + 3.04 eV) 。碳纳米锥的空间限制机制的研究为设计高效的OER催化剂提供了新的视角。