Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Smartphone-Enabled Paper-Based Hemoglobin Sensor for Extreme Point-of-Care Diagnostics
ACS Sensors ( IF 8.2 ) Pub Date : 2021-02-26 , DOI: 10.1021/acssensors.0c02361 Sujay K. Biswas 1 , Subhamoy Chatterjee 2 , Soumya Bandyopadhyay 3 , Shantimoy Kar 4, 5 , Nirmal K. Som 6 , Satadal Saha 1, 7, 8 , Suman Chakraborty 3, 4
ACS Sensors ( IF 8.2 ) Pub Date : 2021-02-26 , DOI: 10.1021/acssensors.0c02361 Sujay K. Biswas 1 , Subhamoy Chatterjee 2 , Soumya Bandyopadhyay 3 , Shantimoy Kar 4, 5 , Nirmal K. Som 6 , Satadal Saha 1, 7, 8 , Suman Chakraborty 3, 4
Affiliation
We report a simple, affordable (∼0.02 US $/test), rapid (within 5 min), and quantitative paper-based sensor integrated with smartphone application for on-spot detection of hemoglobin (Hgb) concentration using approximately 10 μL of finger-pricked blood. Quantitative analytical colorimetry is achieved via an Android-based application (Sens-Hb), integrating key operational steps of image acquisition, real-time analysis, and result dissemination. Further, feedback from the machine learning algorithm for adaptation of calibration data offers consistent dynamic improvement for precise predictions of the test results. Our study reveals a successful deployment of the extreme point-of-care test in rural settings where no infrastructural facilities for diagnostics are available. The Hgb test device is validated both in the controlled laboratory environment (n = 200) and on the field experiments (n = 142) executed in four different Indian villages. Validation results are well correlated with the pathological gold standard results (r = 0.9583) with high sensitivity and specificity for the healthy (n = 136) (>11 g/dL) (specificity: 97.2%), mildly anemic (n = 55) (<11 g/dL) (sensitivity: 87.5%, specificity: 100%), and severely anemic (n = 9) (<7 g/dL) (sensitivity: 100%, specificity: 100%) samples. Results from field trials reveal that only below 5% cases of the results are interpreted erroneously by classifying mildly anemic patients as healthy ones. On-field deployment has unveiled the test kit to be extremely user friendly that can be handled by minimally trained frontline workers for catering the needs of the underserved communities.
中文翻译:
基于智能手机的纸质血红蛋白传感器可用于极端护理点诊断
我们报告了一种简单,负担得起的(〜0.02美元/测试),快速的(5分钟之内),定量的纸质传感器,并与智能手机应用程序集成在一起,可使用大约10μL的手指在现场检测血红蛋白(Hgb)浓度,刺血。定量分析比色法是通过基于Android的应用程序(Sens-Hb)实现的,该应用程序集成了图像采集,实时分析和结果分发的关键操作步骤。此外,来自机器学习算法的用于校正校准数据的反馈为测试结果的精确预测提供了一致的动态改进。我们的研究表明,在没有可用的诊断基础设施的农村地区,成功部署了极端即时护理测试。(n = 200),并在四个不同的印度村庄进行了实地实验(n = 142)。验证结果与病理金标准结果(r = 0.9583)高度相关,对健康的敏感性和特异性高(n = 136)(> 11 g / dL)(特异性:97.2%),轻度贫血(n= 55)(<11 g / dL)(灵敏度:87.5%,特异性:100%)和严重贫血(n = 9)(<7 g / dL)(灵敏度:100%,特异性:100%)样品。现场试验的结果表明,将轻度贫血患者归类为健康患者,只会错误地解释少于5%的结果。现场部署已经发布了该测试套件,该套件非常用户友好,可由受过最少培训的一线工人进行操作,以满足服务欠佳的社区的需求。
更新日期:2021-03-26
中文翻译:
基于智能手机的纸质血红蛋白传感器可用于极端护理点诊断
我们报告了一种简单,负担得起的(〜0.02美元/测试),快速的(5分钟之内),定量的纸质传感器,并与智能手机应用程序集成在一起,可使用大约10μL的手指在现场检测血红蛋白(Hgb)浓度,刺血。定量分析比色法是通过基于Android的应用程序(Sens-Hb)实现的,该应用程序集成了图像采集,实时分析和结果分发的关键操作步骤。此外,来自机器学习算法的用于校正校准数据的反馈为测试结果的精确预测提供了一致的动态改进。我们的研究表明,在没有可用的诊断基础设施的农村地区,成功部署了极端即时护理测试。(n = 200),并在四个不同的印度村庄进行了实地实验(n = 142)。验证结果与病理金标准结果(r = 0.9583)高度相关,对健康的敏感性和特异性高(n = 136)(> 11 g / dL)(特异性:97.2%),轻度贫血(n= 55)(<11 g / dL)(灵敏度:87.5%,特异性:100%)和严重贫血(n = 9)(<7 g / dL)(灵敏度:100%,特异性:100%)样品。现场试验的结果表明,将轻度贫血患者归类为健康患者,只会错误地解释少于5%的结果。现场部署已经发布了该测试套件,该套件非常用户友好,可由受过最少培训的一线工人进行操作,以满足服务欠佳的社区的需求。