当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Core–shell-structured CNT@hydrous RuO2 as a H2/CO2 fuel cell cathode catalyst to promote CO2 methanation and generate electricity
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2021-2-10 , DOI: 10.1039/d0ta11232a Jixiang Hu 1, 2, 3, 4 , Ting Qu 1, 2, 3, 4 , Yan Liu 1, 2, 3, 4 , Xin Dai 1, 2, 3, 4 , Qiang Tan 1, 2, 3, 4 , Yuanzhen Chen 1, 2, 3, 4 , Shengwu Guo 1, 2, 3, 4 , Yongning Liu 1, 2, 3, 4
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2021-2-10 , DOI: 10.1039/d0ta11232a Jixiang Hu 1, 2, 3, 4 , Ting Qu 1, 2, 3, 4 , Yan Liu 1, 2, 3, 4 , Xin Dai 1, 2, 3, 4 , Qiang Tan 1, 2, 3, 4 , Yuanzhen Chen 1, 2, 3, 4 , Shengwu Guo 1, 2, 3, 4 , Yongning Liu 1, 2, 3, 4
Affiliation
H2/CO2 fuel cells are important devices that convert CO2 into CH4 while generating electricity at mild temperatures. Anhydrous ruthenium oxide (RuO2) on carbon nanotubes (CNT) as a cathode catalyst causes CO2 methanation, but the methane production rate needs to be improved. In this paper, a core–shell structure of CNT@hydrous RuO2 was fabricated by a simple sol–gel method. Unlike anhydrous RuO2, which is a single electronic conductor, CNT@hydrous RuO2 is a proton–electron mixed conductive material. Therefore, protons transfer not only in thepolybenzimidazole (PBI) film but also in the catalyst layer with the assistance of crystalline water in hydrous RuO2. CO2 methanation involving a reaction of multiple protons and electrons can be accelerated. The methane generation rate of CNT@hydrous RuO2 reached 331.2 μmol gcat−1 h−1 at 190 °C which is 3 times higher than that of anhydrous RuO2. This research result provides an effective strategy for the catalytic reaction of multiple proton–electron transfers.
中文翻译:
核-壳结构的CNT @水合RuO2作为H2 / CO2燃料电池阴极催化剂,可促进CO2甲烷化并发电
H 2 / CO 2燃料电池是重要的设备,可在温和的温度下发电的同时将CO 2转换为CH 4。作为阴极催化剂的碳纳米管(CNT)上的无水氧化钌(RuO 2)导致CO 2甲烷化,但是甲烷的生产率需要提高。在本文中,通过简单的溶胶-凝胶法制备了CNT @ hydrous RuO 2的核-壳结构。CNT @ hydrous RuO 2不同于单电子导体的无水RuO 2。是质子-电子混合导电材料。因此,借助于含水RuO 2中的结晶水,质子不仅在聚苯并咪唑(PBI)膜中转移,而且在催化剂层中转移。可以加速涉及多个质子和电子反应的CO 2甲烷化。190℃时,CNT @ RuO 2的甲烷生成速率达到331.2μmolg cat -1 h -1,是无水RuO 2的3倍。该研究结果为多种质子-电子转移的催化反应提供了有效的策略。
更新日期:2021-02-26
中文翻译:
核-壳结构的CNT @水合RuO2作为H2 / CO2燃料电池阴极催化剂,可促进CO2甲烷化并发电
H 2 / CO 2燃料电池是重要的设备,可在温和的温度下发电的同时将CO 2转换为CH 4。作为阴极催化剂的碳纳米管(CNT)上的无水氧化钌(RuO 2)导致CO 2甲烷化,但是甲烷的生产率需要提高。在本文中,通过简单的溶胶-凝胶法制备了CNT @ hydrous RuO 2的核-壳结构。CNT @ hydrous RuO 2不同于单电子导体的无水RuO 2。是质子-电子混合导电材料。因此,借助于含水RuO 2中的结晶水,质子不仅在聚苯并咪唑(PBI)膜中转移,而且在催化剂层中转移。可以加速涉及多个质子和电子反应的CO 2甲烷化。190℃时,CNT @ RuO 2的甲烷生成速率达到331.2μmolg cat -1 h -1,是无水RuO 2的3倍。该研究结果为多种质子-电子转移的催化反应提供了有效的策略。