当前位置:
X-MOL 学术
›
Phys. Status Solidi. Rapid Res. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ferroelectric, Analog Resistive Switching in Back‐End‐of‐Line Compatible TiN/HfZrO4/TiOx Junctions
Physica Status Solidi-Rapid Research Letters ( IF 2.5 ) Pub Date : 2020-12-18 , DOI: 10.1002/pssr.202000524
Laura Bégon-Lours 1 , Mattia Halter 1, 2 , Youri Popoff 1, 2 , Bert Jan Offrein 1
Physica Status Solidi-Rapid Research Letters ( IF 2.5 ) Pub Date : 2020-12-18 , DOI: 10.1002/pssr.202000524
Laura Bégon-Lours 1 , Mattia Halter 1, 2 , Youri Popoff 1, 2 , Bert Jan Offrein 1
Affiliation
![]() |
Due to their compatibility with complementary metal–oxide–semiconductor technologies, hafnium‐based ferroelectric devices receive increasing interest for the fabrication of neuromorphic hardware. Herein, an analog resistive memory device is fabricated with a process developed for back‐end‐of‐line integration. A 4.5 nm‐thick HfZrO4 (HZO) layer is crystallized into the ferroelectric phase, a thickness thin enough to allow electrical conduction through the layer. A TiOx interlayer is used to create an asymmetric junction as required for transferring a polarization state change into a modification of the conductivity. Memristive functionality is obtained, both in the pristine state and after ferroelectric wake‐up, involving redistribution of oxygen vacancies in the ferroelectric layer. The resistive switching is shown to originate directly from the ferroelectric properties of the HZO layer.
中文翻译:
后端兼容的TiN / HfZrO4 / TiOx结中的铁电模拟电阻开关
with基铁电器件由于与互补的金属氧化物半导体技术兼容,因此对制造神经形态硬件的兴趣日益浓厚。本文中,模拟阻性存储器件的制造工艺是为后端后端集成而开发的。将4.5纳米厚的HfZrO 4(HZO)层结晶为铁电相,其厚度足够薄以允许通过该层的导电。TiO x中间层用于根据需要创建非对称结,以将极化状态变化转换为电导率的修改。在原始状态下和铁电唤醒后均可获得忆阻功能,这涉及在铁电层中氧空位的重新分布。电阻切换显示为直接源自HZO层的铁电特性。
更新日期:2020-12-18
中文翻译:

后端兼容的TiN / HfZrO4 / TiOx结中的铁电模拟电阻开关
with基铁电器件由于与互补的金属氧化物半导体技术兼容,因此对制造神经形态硬件的兴趣日益浓厚。本文中,模拟阻性存储器件的制造工艺是为后端后端集成而开发的。将4.5纳米厚的HfZrO 4(HZO)层结晶为铁电相,其厚度足够薄以允许通过该层的导电。TiO x中间层用于根据需要创建非对称结,以将极化状态变化转换为电导率的修改。在原始状态下和铁电唤醒后均可获得忆阻功能,这涉及在铁电层中氧空位的重新分布。电阻切换显示为直接源自HZO层的铁电特性。