当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na+ Flux Dynamics for Solid‐State Na Metal Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-25 , DOI: 10.1002/aenm.202003469 Xianguang Miao 1 , Huiyang Wang 1 , Rui Sun 1 , Xiaoli Ge 1 , Danyang Zhao 1 , Peng Wang 1 , Rutao Wang 1 , Longwei Yin 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-25 , DOI: 10.1002/aenm.202003469 Xianguang Miao 1 , Huiyang Wang 1 , Rui Sun 1 , Xiaoli Ge 1 , Danyang Zhao 1 , Peng Wang 1 , Rutao Wang 1 , Longwei Yin 1
Affiliation
Inorganic solid‐state electrolyte (SSE) based Na‐metal batteries have received extensive attention in next‐generation lithium‐free energy storage systems with both high‐security and superior electrochemical performance. Herein, in contrast to the conventionally used polymer/ceramic/polymer sandwich electrolyte, an efficient green and scalable powder‐polishing synthetic method is developed to fabricate a pyrolyzed‐polyacrylonitrile modified Na super ionic conductor (NASICON) electrolyte to relieve polarization of integrated composite SSE and ameliorate interfacial contact between the electrolyte and the Na anode. Furthermore, introducing S in the preferable isotropous sulfurized polyacrylonitrile (SPAN) interlayer can trigger dehydrogenation and cyclization of polyacrylonitrile with chemically‐bonded short‐chain SS segments, which can bond with Na+ to redistribute the interfacial electric field and homogenize transported Na+ flux, leading to transition of Na deposition behavior from dendrite growth mode to lateral flat‐shape growth tendency. The conjugated polymer backbones possess delocalized radicals that can activate formed short‐chain sulfides to reconnect to the backbones, thus maintaining superior structural stability. Benefiting from the rational interfacial design, a record‐high value of 1.4 mA cm−2 for critical current density of Na/SPAN‐NASICON/Na cells is obtained. Moreover, SPAN is used as a cathode to assemble solid‐state Na/SPAN‐NASICON/SPAN Na‐organosulfur batteries, demonstrating superior capacity and cycling‐stability. The rational SPAN‐based structural design strategy may provide an avenue for potential application of solid‐state alkali metal batteries.
中文翻译:
固态Na金属电池的均质Na +通量动力学的各向同性硫化聚丙烯腈中间层
基于无机固态电解质(SSE)的Na-金属电池在下一代无锂储能系统中受到了广泛关注,该系统具有高安全性和出色的电化学性能。在此,与常规使用的聚合物/陶瓷/聚合物夹心电解质相反,开发了一种有效的绿色且可扩展的粉末抛光合成方法来制造热解聚丙烯腈改性的Na超离子导体(NASICON)电解质,以减轻集成复合材料SSE的极化改善电解质与钠阳极之间的界面接触。此外,在优选的isotropous硫化聚丙烯腈(SPAN)中间层可以触发脱氢和聚丙烯腈的环化引入S采用化学键合的短链S- S段可以与Na +结合以重新分布界面电场并均匀化所输送的Na +通量,从而导致Na沉积行为从枝晶生长模式转变为横向扁平形生长趋势。共轭聚合物主链具有离域基团,这些基团可以激活形成的短链硫化物以重新连接至主链,从而保持出色的结构稳定性。得益于合理的界面设计,创纪录的1.4 mA cm -2的高值获得Na / SPAN-NASICON / Na电池的临界电流密度。此外,SPAN被用作组装固态Na / SPAN-NASICON / SPAN Na-有机硫电池的阴极,显示出出众的容量和循环稳定性。基于SPAN的合理结构设计策略可能为固态碱金属电池的潜在应用提供一条途径。
更新日期:2021-04-08
中文翻译:
固态Na金属电池的均质Na +通量动力学的各向同性硫化聚丙烯腈中间层
基于无机固态电解质(SSE)的Na-金属电池在下一代无锂储能系统中受到了广泛关注,该系统具有高安全性和出色的电化学性能。在此,与常规使用的聚合物/陶瓷/聚合物夹心电解质相反,开发了一种有效的绿色且可扩展的粉末抛光合成方法来制造热解聚丙烯腈改性的Na超离子导体(NASICON)电解质,以减轻集成复合材料SSE的极化改善电解质与钠阳极之间的界面接触。此外,在优选的isotropous硫化聚丙烯腈(SPAN)中间层可以触发脱氢和聚丙烯腈的环化引入S采用化学键合的短链S- S段可以与Na +结合以重新分布界面电场并均匀化所输送的Na +通量,从而导致Na沉积行为从枝晶生长模式转变为横向扁平形生长趋势。共轭聚合物主链具有离域基团,这些基团可以激活形成的短链硫化物以重新连接至主链,从而保持出色的结构稳定性。得益于合理的界面设计,创纪录的1.4 mA cm -2的高值获得Na / SPAN-NASICON / Na电池的临界电流密度。此外,SPAN被用作组装固态Na / SPAN-NASICON / SPAN Na-有机硫电池的阴极,显示出出众的容量和循环稳定性。基于SPAN的合理结构设计策略可能为固态碱金属电池的潜在应用提供一条途径。