当前位置:
X-MOL 学术
›
Adv. Differ. Equ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Higher order solitary solutions to the meta-model of diffusively coupled Lotka–Volterra systems
Advances in Difference Equations ( IF 3.1 ) Pub Date : 2021-02-25 , DOI: 10.1186/s13662-021-03300-4 Inga Timofejeva , Tadas Telksnys , Zenonas Navickas , Romas Marcinkevicius , Minvydas Ragulskis
中文翻译:
扩散耦合的Lotka-Volterra系统的元模型的高阶孤立解
更新日期:2021-02-25
Advances in Difference Equations ( IF 3.1 ) Pub Date : 2021-02-25 , DOI: 10.1186/s13662-021-03300-4 Inga Timofejeva , Tadas Telksnys , Zenonas Navickas , Romas Marcinkevicius , Minvydas Ragulskis
A meta-model of diffusively coupled Lotka–Volterra systems used to model various biomedical phenomena is considered in this paper. Necessary and sufficient conditions for the existence of nth order solitary solutions are derived via a modified inverse balancing technique. It is shown that as the highest possible solitary solution order n is increased, the number of nonzero solution parameter values remains constant for solitary solutions of order \(n>3\). Analytical and computational experiments are used to illustrate the obtained results.
中文翻译:
扩散耦合的Lotka-Volterra系统的元模型的高阶孤立解
本文考虑了扩散耦合的Lotka-Volterra系统的元模型,该系统用于建模各种生物医学现象。通过改进的逆平衡技术,得出存在n阶孤立解的充要条件。结果表明,随着最高可能的孤立解阶数n的增加,对于阶\(n> 3 \)的孤立解,非零解参数值的数量保持不变。分析和计算实验用来说明所获得的结果。