当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electroluminescent Fabric Woven by Ultrastretchable Fibers for Arbitrarily Controllable Pattern Display
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-02-24 , DOI: 10.1021/acsami.0c19743
Hanbing Mi 1 , Leni Zhong 1 , Xiaoxiao Tang 2 , Pengtao Xu 2 , Xingyi Liu 2 , Tianzhi Luo 1 , Xingyu Jiang 1
Affiliation  

Flexible textile displays can be revolutionary for information transmission at any place and any time. Typically, textile displays are fabricated by traditional rigid electronics that sacrifice mechanical flexibility of devices or by flexible electronics that do not have an appropriate choice to arbitrarily control single pixels. This work reports on an electroluminescent fabric woven by ultrastretchable fibers (electroluminescent fibers up to 400% stretch, electrode fibers up to 250% stretch), which can exhibit the pixel-based arbitrarily controllable pattern display by a mobile phone application. To realize ultrastretchability, we made these fibers by encapsulating liquid metals on a polyurethane core (high elasticity). To realize arbitrary control, the design shows a plain-woven structure comprising ZnS-based electroluminescent fibers and perpendicular electrode fibers. The cross-points between the electroluminescent fiber and the electrode fiber form pixels that can be switched on or off independently and can further form the pixel-based arbitrarily controllable pattern display. By doping with different elements, ZnS-based electroluminescent fibers can emit green, blue, or yellow lights. Meanwhile, the fabrication of these fibers employs dip-coating, a scalable manufacturing method without high temperature or vacuum atmosphere. These fabrics show great potential in a wide range of applications such as wearable electronic devices, healthcare, and fashion design.

中文翻译:

超可拉伸纤维编织的电致发光织物,用于任意可控的图案显示

柔性纺织品展示可以在任何地方,任何时间进行信息传输带来革命性的变化。典型地,织物显示由传统的刚性电子制造该器件的或由不具有适当的选择,以任意地控制单个像素柔性电子牺牲机械柔韧性。这项工作报道了一种由超拉伸纤维(拉伸强度高达400%的电致发光纤维,拉伸强度高达250%的电致发光纤维)织成的电致发光织物,该织物可通过移动电话应用展示基于像素的任意可控图案显示。为了实现超拉伸性,我们通过将液态金属封装在聚氨酯芯上(高弹性)来制造这些纤维。为了实现任意控制,该设计显示了一种平织结构,包含基于ZnS的电致发光纤维和垂直电极纤维。电致发光纤维和电极纤维之间的交叉点形成可以独立地接通或断开的像素,并且可以进一步形成基于像素的任意可控图案显示器。通过掺杂不同的元素,基于ZnS的电致发光纤维可以发出绿色,蓝色或黄色的光。同时,这些纤维的制造采用浸涂,这是一种可扩展的制造方法,无需高温或真空气氛。这些织物在可穿戴电子设备,医疗保健和时装设计等广泛应用中显示出巨大潜力。电致发光纤维和电极纤维之间的交叉点形成可以独立地接通或断开的像素,并且可以进一步形成基于像素的任意可控图案显示器。通过掺杂不同的元素,基于ZnS的电致发光纤维可以发出绿色,蓝色或黄色的光。同时,这些纤维的制造采用浸涂,这是一种可扩展的制造方法,无需高温或真空气氛。这些织物在可穿戴电子设备,医疗保健和时装设计等广泛应用中显示出巨大潜力。电致发光纤维和电极纤维之间的交叉点形成可以独立地接通或断开的像素,并且可以进一步形成基于像素的任意可控图案显示器。通过掺杂不同的元素,基于ZnS的电致发光纤维可以发出绿色,蓝色或黄色的光。同时,这些纤维的制造采用浸涂,这是一种可扩展的制造方法,无需高温或真空气氛。这些织物在可穿戴电子设备,医疗保健和时装设计等广泛应用中显示出巨大潜力。这些纤维的制造采用浸涂,这是一种可扩展的制造方法,无需高温或真空气氛。这些织物在可穿戴电子设备,医疗保健和时装设计等广泛应用中显示出巨大潜力。这些纤维的制造采用浸涂,这是一种可扩展的制造方法,无需高温或真空气氛。这些织物在可穿戴电子设备,医疗保健和时装设计等广泛应用中显示出巨大潜力。
更新日期:2021-03-10
down
wechat
bug