当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crystal Phase-Controlled Synthesis of the CoP@Co2P Heterostructure with 3D Nanowire Networks for High-Performance Li-Ion Capacitor Applications
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-02-22 , DOI: 10.1021/acsami.0c21886 Feng-Feng Li 1 , Jian-Fei Gao 1 , Zheng-Hua He 1 , Ling-Bin Kong 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-02-22 , DOI: 10.1021/acsami.0c21886 Feng-Feng Li 1 , Jian-Fei Gao 1 , Zheng-Hua He 1 , Ling-Bin Kong 1, 2
Affiliation
The paramount focus in the construction of lithium-ion capacitors (LICs) is the development of anode materials with high reversible capacity and fast kinetics to overcome the mismatch of kinetics and capacity between the anode and cathode. Herein, a strategy is presented for the controllable synthesis of cobalt-based phosphides with various morphologies by adjusting the time of the phosphidation process, including 3D hierarchical needle-stacked diabolo-shaped CoP nanorods, 3D hierarchical stick-stacked diabolo-shaped Co2P nanorods, and 3D hierarchical heterostructure CoP@Co2P nanorods. 3D hierarchical nanostructures and a highly conductive project to accommodate volume changes are rational designs to achieve a robust construction, effective electron-ion transportation, and rapid kinetics characteristics, thus leading to excellent cycling stability and rate performance. Owing to these merits, the 3D hierarchical CoP, Co2P, and CoP@Co2P nanorods demonstrate prominent specific capacities of 573, 609, and 621 mA h g–1 at 0.1 A g–1 over 300 cycles, respectively. In addition, a high-performance CoP@Co2P//AC LIC is successfully constructed, which can achieve high energy densities of 166.2 and 36 W h kg–1 at power densities of 175 and 17524 W kg–1 (83.7% capacity retention after 12000 cycles). Therefore, the controllable synthesis of various simultaneously constructed crystalline phases and morphologies can be used to fabricate other advanced energy storage devices.
中文翻译:
具有高性能锂离子电容器应用的3D纳米线网络的晶体相控制合成CoP @ Co 2 P异质结构
锂离子电容器(LIC)的构造中最重要的重点是开发具有高可逆容量和快速动力学的阳极材料,以克服阳极和阴极之间的动力学和容量不匹配问题。在这里,提出了一种通过调节磷化过程的时间来可控制地合成具有各种形态的钴基磷化物的策略,包括3D分层针状堆叠的空竹状CoP纳米棒,3D分层棒状堆叠的空竹状Co 2 P纳米棒和3D分层异质结构CoP @ Co 2P纳米棒。3D分层纳米结构和适应体积变化的高导电性项目是合理的设计,可实现坚固的结构,有效的电子离子传输和快速的动力学特性,从而带来出色的循环稳定性和倍率性能。由于这些优点,3D分层CoP,Co 2 P和CoP @ Co 2 P纳米棒在300个循环中分别在0.1 A g –1下显示了573、609和621 mA hg –1的显着比容量。此外,成功构建了高性能CoP @ Co 2 P // AC LIC,可以在175和17524 W kg –1的功率密度下实现166.2和36 W h kg –1的高能量密度。(12000次循环后,容量保留率为83.7%)。因此,各种同时构造的结晶相和形态的可控合成可用于制造其他先进的能量存储装置。
更新日期:2021-03-03
中文翻译:
具有高性能锂离子电容器应用的3D纳米线网络的晶体相控制合成CoP @ Co 2 P异质结构
锂离子电容器(LIC)的构造中最重要的重点是开发具有高可逆容量和快速动力学的阳极材料,以克服阳极和阴极之间的动力学和容量不匹配问题。在这里,提出了一种通过调节磷化过程的时间来可控制地合成具有各种形态的钴基磷化物的策略,包括3D分层针状堆叠的空竹状CoP纳米棒,3D分层棒状堆叠的空竹状Co 2 P纳米棒和3D分层异质结构CoP @ Co 2P纳米棒。3D分层纳米结构和适应体积变化的高导电性项目是合理的设计,可实现坚固的结构,有效的电子离子传输和快速的动力学特性,从而带来出色的循环稳定性和倍率性能。由于这些优点,3D分层CoP,Co 2 P和CoP @ Co 2 P纳米棒在300个循环中分别在0.1 A g –1下显示了573、609和621 mA hg –1的显着比容量。此外,成功构建了高性能CoP @ Co 2 P // AC LIC,可以在175和17524 W kg –1的功率密度下实现166.2和36 W h kg –1的高能量密度。(12000次循环后,容量保留率为83.7%)。因此,各种同时构造的结晶相和形态的可控合成可用于制造其他先进的能量存储装置。