当前位置: X-MOL 学术Log. J. IGPL › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proof Systems for 3-valued Logics Based on Gödel’s Implication
Logic Journal of the IGPL ( IF 0.6 ) Pub Date : 2021-01-31 , DOI: 10.1093/jigpal/jzab013
Arnon Avron 1
Affiliation  

The logic $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ was introduced in Robles and Mendéz (2014, Logic Journal of the IGPL, 22, 515–538) as a paraconsistent logic which is based on Gödel’s 3-valued matrix, except that Kleene–Łukasiewicz’s negation is added to the language and is used as the main negation connective. We show that $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ is exactly the intersection of $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$, the two truth-preserving 3-valued logics which are based on the same truth tables. (In $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ the set ${\cal D}$ of designated elements is $\{1\}$, while in $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ ${\cal D}=\{1,0.5\}$.) We then construct a Hilbert-type system which has (MP) for $\to $ as its sole rule of inference, and is strongly sound and complete for $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$. Then we show how, by adding one axiom (in the case of $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$) or one new rule of inference (in the case of $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$), we get strongly sound and complete systems for $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$. Finally, we provide quasi-canonical Gentzen-type systems which are sound and complete for those logics and show that they are all analytic, by proving the cut-elimination theorem for them.

中文翻译:

基于哥德尔蕴涵的三值逻辑证明系统

逻辑 $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 在 Robles and Mendéz (2014, Logic Journal of the IGPL, 22 , 515–538) 作为一种基于 Gödel 的 3 值矩阵的副一致逻辑,除了 Kleene–Łukasiewicz 的否定被添加到语言中并用作主要的否定连接词。我们证明 $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 正是 $G3^{\{1\}} 的交集_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 和 $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-} }}\!\!\textrm{L}}$,两个基于相同真值表的保真三值逻辑。(在 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 中,指定元素的集合 ${\cal D}$ 是$\{1\}$, 而在 $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ ${\ cal D}=\{1,0.5\}$。) 然后我们构造了一个希尔伯特型系统,它以 $\to $ 的 (MP) 作为其唯一的推理规则,并且对于 $G3^{<}_{{{}^{\scriptsize{ -}}}\!\!\textrm{L}}$。然后我们展示如何通过添加一个公理(在 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 的情况下)或一种新的推理规则(在 $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 的情况下),我们得到了 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 和 $G3^{\{ 1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。最后,我们通过证明它们的割消定理,提供了对这些逻辑来说是健全和完整的准规范 Gentzen 型系统,并表明它们都是解析的。}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。然后我们展示如何通过添加一个公理(在 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 的情况下)或一种新的推理规则(在 $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 的情况下),我们得到了 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 和 $G3^{\{ 1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。最后,我们通过证明它们的割消定理,提供了对这些逻辑来说是健全和完整的准规范 Gentzen 型系统,并表明它们都是解析的。}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。然后我们展示如何通过添加一个公理(在 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 的情况下)或一种新的推理规则(在 $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 的情况下),我们得到了 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 和 $G3^{\{ 1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。最后,我们通过证明它们的割消定理,提供了对这些逻辑来说是健全和完整的准规范 Gentzen 型系统,并表明它们都是解析的。我们得到了 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 和 $G3^{\{ 1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。最后,我们通过证明它们的割消定理,提供了对这些逻辑来说是健全和完整的准规范 Gentzen 型系统,并表明它们都是解析的。我们得到了 $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ 和 $G3^{\{ 1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$。最后,我们通过证明它们的割消定理,提供了对这些逻辑来说是健全和完整的准规范 Gentzen 型系统,并表明它们都是解析的。
更新日期:2021-01-31
down
wechat
bug