当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Review of Vertical Graphene and its Applications
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-02-22 , DOI: 10.1021/acsami.0c19188
Wei Zheng 1, 2 , Xin Zhao 2 , Wenjie Fu 1, 2
Affiliation  

Vertical graphene (VG) is a thin-film complex material featuring hierarchical microstructures: graphene-containing carbon nanosheets growing vertically on its deposition substrate, few-layer graphene basal layers, and chemically active atomistic defect sites and edges. Thanks to the fundamental characteristics of graphene materials, e.g. excellent electrical conductivity, thermal conductivity, chemical stability, and large specific surface area, VG materials have been successfully implemented into various niche applications which are strongly associated with their unique morphology. The microstructure of VG materials can be tuned by modifying growth methods and the parameters of growth processes. Multiple growth processes have been developed to address faster, safer, and mass production methods of VG materials, as well as accommodating various applications. VG’s successful applications include field emission, supercapacitors, fuel cells, batteries, gas sensors, biochemical sensors, electrochemical analysis, strain sensors, wearable electronics, photo trapping, terahertz emission, etc. Research topics on VG have been more diversified in recent years, indicating extensive attention from the research community and great commercial value. In this review article, VG’s morphology is briefly reviewed, and then various growth processes are discussed from the perspective of plasma science. After that, the most recent progress in its applications and related sciences and technologies are discussed.

中文翻译:

垂直石墨烯及其应用综述

垂直石墨烯(VG)是一种具有多层微观结构的薄膜复合材料:含石墨烯的碳纳米片在其沉积基底上垂直生长,少量石墨烯基底层以及化学活性的原子缺陷位点和边缘。由于石墨烯材料的基本特性,例如出色的导电性,导热性,化学稳定性和大的比表面积,VG材料已成功应用于各种利基应用中,这些应用与它们的独特形态密切相关。VG材料的微观结构可以通过修改生长方法和生长过程的参数来调整。已经开发出多种生长过程,以解决更快,更安全和批量生产VG材料的方法,以及适应各种应用。VG的成功应用包括场发射,超级电容器,燃料电池,电池,气体传感器,生化传感器,电化学分析,应变传感器,可穿戴电子设备,光阱,太赫兹发射等。近年来,VG的研究主题更加多样化,这表明研究界的广泛关注和巨大的商业价值。在这篇综述文章中,对VG的形态进行了简要回顾,然后从等离子科学的角度讨论了各种生长过程。之后,讨论了其应用和相关科学与技术的最新进展。应变传感器,可穿戴电子设备,光阱,太赫兹发射等。近年来,关于VG的研究主题更加多样化,表明了研究界的广泛关注和巨大的商业价值。在这篇综述文章中,对VG的形态进行了简要回顾,然后从等离子科学的角度讨论了各种生长过程。之后,讨论了其应用和相关科学与技术的最新进展。应变传感器,可穿戴电子设备,光阱,太赫兹发射等。近年来,关于VG的研究主题更加多样化,表明了研究界的广泛关注和巨大的商业价值。在这篇综述文章中,对VG的形态进行了简要回顾,然后从等离子科学的角度讨论了各种生长过程。之后,讨论了其应用和相关科学与技术的最新进展。然后从等离子科学的角度讨论了各种生长过程。之后,讨论了其应用和相关科学与技术的最新进展。然后从等离子科学的角度讨论了各种生长过程。之后,讨论了其应用和相关科学与技术的最新进展。
更新日期:2021-03-03
down
wechat
bug