Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO2 Reduction
Small ( IF 13.0 ) Pub Date : 2021-02-22 , DOI: 10.1002/smll.202005357 Xiang‐Jing Kong 1 , Tao He 1 , Jian Zhou 1 , Chen Zhao 1 , Tong‐Chuan Li 1 , Xue‐Qian Wu 1 , Kecheng Wang 1 , Jian‐Rong Li 1
Small ( IF 13.0 ) Pub Date : 2021-02-22 , DOI: 10.1002/smll.202005357 Xiang‐Jing Kong 1 , Tao He 1 , Jian Zhou 1 , Chen Zhao 1 , Tong‐Chuan Li 1 , Xue‐Qian Wu 1 , Kecheng Wang 1 , Jian‐Rong Li 1
Affiliation
Despite numerous inherent merits of metal–organic frameworks (MOFs), structural fragility has imposed great restrictions on their wider involvement in many applications, such as in catalysis. Herein, a strategy for enhancing stability and enabling functionality in a labile Zr(IV)-MOF has been proposed by in situ porphyrin substitution. A size- and geometry-matched robust linear porphyrin ligand 4,4′-(porphyrin-5,15-diyl)dibenzolate (DCPP2−) is selected to replace the 4,4′-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)dibenzoate (NDIDB2−) ligand in the synthesis of BUT-109(Zr), affording BUT-110 with varied porphyrin contents. Compared to BUT-109(Zr), the chemical stability of BUT-110 series is greatly improved. Metalloporphyrin incorporation endows BUT-110 MOFs with high catalytic activity in the photoreduction of CO2, in the absence of photosensitizers. By tuning the metal species and porphyrin contents in BUT-110, the resulting BUT-110-50%-Co is demonstrated to be a good photocatalyst for selective CO2-to-CO reduction, via balancing the chemical stability, photocatalytic efficiency, and synthetic cost. This work highlights the advantages of in situ ligand substitution for MOF modification, by which uniform distribution and high content of the incoming ligand are accessible in the resulting MOFs. More importantly, it provides a promising approach to convert unstable MOFs, which mainly constitute the vast MOF database but have always been neglected, into robust functional materials.
中文翻译:
Zr(IV)-MOF 中的原位卟啉取代以增强稳定性和光催化 CO2 还原
尽管金属有机框架(MOF)具有许多固有的优点,但结构脆弱性对其在许多应用(例如催化)中的更广泛参与施加了很大限制。在此,通过原位卟啉取代提出了一种提高不稳定 Zr(IV)-MOF 稳定性和启用功能的策略。选择大小和几何形状匹配的稳健线性卟啉配体 4,4'-(porphyrin-5,15-diyl)dibenzolate (DCPP 2- ) 来代替 4,4'-(1,3,6,8- tetraoxobenzo [ lmn ][3,8]phenanthroline-2,7(1 H ,3 H ,6 H ,8 H )-diyl)dibenzoate (NDIDB 2−) 配体在 BUT-109(Zr) 的合成中,提供具有不同卟啉含量的 BUT-110。与BUT-109(Zr)相比,BUT-110系列的化学稳定性大大提高。在没有光敏剂的情况下,金属卟啉掺入赋予 BUT-110 MOF 在 CO 2光还原中具有高催化活性。通过调整 BUT-110 中的金属种类和卟啉含量,所得 BUT-110-50%-Co 被证明是选择性 CO 2的良好光催化剂通过平衡化学稳定性、光催化效率和合成成本,还原一氧化碳。这项工作突出了原位配体取代 MOF 修饰的优势,通过这种优势,在所得 MOF 中可以获得均匀分布和高含量的传入配体。更重要的是,它提供了一种有前途的方法来将不稳定的 MOFs 转换成强大的功能材料,这些不稳定的 MOFs 主要构成庞大的 MOF 数据库但一直被忽视。
更新日期:2021-02-22
中文翻译:
Zr(IV)-MOF 中的原位卟啉取代以增强稳定性和光催化 CO2 还原
尽管金属有机框架(MOF)具有许多固有的优点,但结构脆弱性对其在许多应用(例如催化)中的更广泛参与施加了很大限制。在此,通过原位卟啉取代提出了一种提高不稳定 Zr(IV)-MOF 稳定性和启用功能的策略。选择大小和几何形状匹配的稳健线性卟啉配体 4,4'-(porphyrin-5,15-diyl)dibenzolate (DCPP 2- ) 来代替 4,4'-(1,3,6,8- tetraoxobenzo [ lmn ][3,8]phenanthroline-2,7(1 H ,3 H ,6 H ,8 H )-diyl)dibenzoate (NDIDB 2−) 配体在 BUT-109(Zr) 的合成中,提供具有不同卟啉含量的 BUT-110。与BUT-109(Zr)相比,BUT-110系列的化学稳定性大大提高。在没有光敏剂的情况下,金属卟啉掺入赋予 BUT-110 MOF 在 CO 2光还原中具有高催化活性。通过调整 BUT-110 中的金属种类和卟啉含量,所得 BUT-110-50%-Co 被证明是选择性 CO 2的良好光催化剂通过平衡化学稳定性、光催化效率和合成成本,还原一氧化碳。这项工作突出了原位配体取代 MOF 修饰的优势,通过这种优势,在所得 MOF 中可以获得均匀分布和高含量的传入配体。更重要的是,它提供了一种有前途的方法来将不稳定的 MOFs 转换成强大的功能材料,这些不稳定的 MOFs 主要构成庞大的 MOF 数据库但一直被忽视。