当前位置:
X-MOL 学术
›
Luminescence
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A rainbow of acridinium chemiluminescence
Luminescence ( IF 3.2 ) Pub Date : 2021-02-22 , DOI: 10.1002/bio.4038 Quinn A Best 1 , Richard A Haack 1 , Kerry M Swift 1 , Brian M Bax 1 , Sergey Y Tetin 1 , Stefan J Hershberger 1
Luminescence ( IF 3.2 ) Pub Date : 2021-02-22 , DOI: 10.1002/bio.4038 Quinn A Best 1 , Richard A Haack 1 , Kerry M Swift 1 , Brian M Bax 1 , Sergey Y Tetin 1 , Stefan J Hershberger 1
Affiliation
Multicolor chemiluminescent acridinium derivatives were synthesized by attaching various common fluorophores to the N10‐acridinium position through a piperazine linker. Triggering of each acridinium derivative using alkaline hydrogen peroxide resulted in a chemiluminescence spectrum dominated by a strong emission (>95%) from the attached fluorophore. The highly quenched emission from the triggered acridinium, acting as a donor, points to a highly efficient intramolecular energy transfer in acridinium‐based chemiluminophore‐fluorophore tandems. A variable, and in many cases minimal, spectral overlap between the donor emission and the acceptor absorption may indicate that in such tandems the energy transfer follows the Dexter electron exchange mechanism. Moreover, fluorophores affixed through the acridinium 9‐position produce a typical acridinium emission profile, demonstrating the need for close distances and favorable intramolecular orientation of the donor and acceptor moieties for the energy transfer to occur. A family of red‐shifted chemiluminescent labels, all sharing a uniform triggering method, will find immediate application in multicolor ligand‐receptor assays. Along with the multiplexing capabilities, the red‐shifted chemiluminescent detection offers a higher tolerance to green‐colored biological interferences and will therefore benefit many screening and diagnostic clinical tests.
中文翻译:
cri啶化学发光的彩虹
通过将各种常见的荧光团连接到N 10上,合成了多色化学发光a啶鎓衍生物-ac啶通过哌嗪连接子的位置。使用碱性过氧化氢触发每种a啶鎓衍生物会导致化学发光光谱,该发光光谱主要来自所连接的荧光团的强发射(> 95%)。触发的a啶作为供体的高度猝灭发射表明基于a啶的化学发光体-荧光团中的高效分子内能量转移。供体发射和受体吸收之间的可变的且在许多情况下最小的光谱重叠可能表明,在这种双稳态中,能量转移遵循德克斯特电子交换机制。此外,通过cri啶9位固定的荧光团会产生典型的a啶发射曲线,证明了对于发生能量转移而言,供体和受体部分需要近距离和有利的分子内取向。一整套红移化学发光标记物,都具有相同的触发方法,将立即应用于多色配体-受体测定中。除具有多路复用功能外,红移化学发光检测对绿色生物干扰具有更高的耐受性,因此将有益于许多筛查和诊断性临床试验。
更新日期:2021-05-03
中文翻译:
cri啶化学发光的彩虹
通过将各种常见的荧光团连接到N 10上,合成了多色化学发光a啶鎓衍生物-ac啶通过哌嗪连接子的位置。使用碱性过氧化氢触发每种a啶鎓衍生物会导致化学发光光谱,该发光光谱主要来自所连接的荧光团的强发射(> 95%)。触发的a啶作为供体的高度猝灭发射表明基于a啶的化学发光体-荧光团中的高效分子内能量转移。供体发射和受体吸收之间的可变的且在许多情况下最小的光谱重叠可能表明,在这种双稳态中,能量转移遵循德克斯特电子交换机制。此外,通过cri啶9位固定的荧光团会产生典型的a啶发射曲线,证明了对于发生能量转移而言,供体和受体部分需要近距离和有利的分子内取向。一整套红移化学发光标记物,都具有相同的触发方法,将立即应用于多色配体-受体测定中。除具有多路复用功能外,红移化学发光检测对绿色生物干扰具有更高的耐受性,因此将有益于许多筛查和诊断性临床试验。