当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Electrocatalyst Based on LiVPO4F/CNT to Enhance the Electrochemical Kinetics for High Performance Li-S Batteries
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2021-02-20 , DOI: 10.1016/j.cej.2021.129053
Yinze Zuo , Yuejin Zhu , Ruchao Wan , Weiming Su , Ye Fan , Ruiping Liu , Yuefeng Tang , Yanfeng Chen

The preparation of functional separator has become an effective strategy to enhance the electrochemical performance of lithium-sulfur batteries (LSBs). Therefore, a functional separator suitable for LSBs has aroused great interest. In this work, we report a novel functional separator using LiVPO4F together with carbon nanotube (LVPF/CNT) as functional coating. The LVPF/CNT modified separator not only acts as a conductive layer to facilitate electron and lithium ion (Li+) transport, but also provides chemisorption for lithium polysulfides (LiPSs) and improves the electrochemical kinetics of LSBs. Thus, the cell with LVPF/CNT modified separator delivers an excellent cycle life with the capacity of 578.5 mAh g-1 after 1000 cycles at 1.5 C. An ultra-long cycle life (551 mAh g-1 after 350 cycles at 0.5 C) and a high areal capacity of 5.58 mAh cm-2 are obtained at a high sulfur loading of 7 mg cm-2. Moreover, the visualized transformation of the LiPSs in the tailor-made cell is also revealed by in situ XRD, while the density functional theory (DFT) simulated the principle of the interaction between the LVPF and LiPSs. This work provides a promising and insightful research to develop the progressive LSBs with functional separator.



中文翻译:

基于LiVPO 4 F / CNT的电化学催化剂可增强高性能Li-S电池的电化学动力学

功能性隔板的制备已成为增强锂硫电池(LSBs)电化学性能的有效策略。因此,适用于LSB的功能分离器引起了极大的兴趣。在这项工作中,我们报告了使用LiVPO 4 F和碳纳米管(LVPF / CNT)作为功能涂层的新型功能性隔板。LVPF / CNT改性隔膜不仅充当导电层以促进电子和锂离子(Li +)传输,而且还提供了多硫化锂(LiPSs)的化学吸附作用并改善了LSB的电化学动力学。因此,带有LVPF / CNT改性隔膜的电池可提供出色的循环寿命,容量为578.5 mAh g -1在1.5 C下进行1000次循环后。在7 mg cm -2的高硫负荷下获得超长循环寿命(在0.5 C下350次循环后为551 mAh g -1)和5.58 mAh cm -2的高面积容量。此外,原位XRD还揭示了定制电池中LiPS的可视化转化,而密度泛函理论(DFT)模拟了LVPF和LiPS之间相互作用的原理。这项工作为开发具有功能分离器的渐进式LSB提供了有前途和深刻的研究。

更新日期:2021-02-21
down
wechat
bug