当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Mechanisms of Superelasticity and Ferroelasticity in Organic Semiconductor Crystals
Chemistry of Materials ( IF 7.2 ) Pub Date : 2021-02-18 , DOI: 10.1021/acs.chemmater.1c00080 Hong Sun 1 , Sang Kyu Park 2 , Ying Diao 2 , Eric P. Kvam 3 , Kejie Zhao 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2021-02-18 , DOI: 10.1021/acs.chemmater.1c00080 Hong Sun 1 , Sang Kyu Park 2 , Ying Diao 2 , Eric P. Kvam 3 , Kejie Zhao 1
Affiliation
Flexible organic crystals enabled by cooperative phase transitions attract enormous interest in solid-state chemistry to produce light, biocompatible, and environmentally benign devices. The recently unveiled super- and ferroelastic organic semiconductor crystals provide a pathway to achieve ultraflexible single-crystal electronics. However, the mechanistic understanding of cooperative transitions in organic crystals is rather at the nascent stage, and most of such studies rely on the trial-and-error approach in molecular design. Compared to the well-studied phase transition in metallic alloys, the key challenge in understanding the organic phase transitions is the elusive crystallography involving intricate molecular dynamics and defects. Here, we leverage the phase transformation theory, genetic algorithm refined molecular modeling, and experimental validation to study the versatile cooperative transitions in bis(triisopropylsilylethynyl)-pentacene semiconductor crystals. The molecular rotation governed thermoelasticity, interconvertible super- and ferroelastic transitions, and molecular twinning are systematically studied by integrating the lattice crystallography and molecular motions. We illustrate the molecular defects of disclination dipoles and molecular stacking faults associated with the molecular twinning process. The fundamental understanding underpins the molecular mechanism of cooperative transitions in a variety of organic solids to promote a new avenue of environmentally responsive organic devices.
中文翻译:
有机半导体晶体中超弹性和铁弹性的分子机理
通过协作相变实现的柔性有机晶体在固态化学中引起了极大的兴趣,以生产轻巧,生物相容且对环境无害的设备。最近发布的超弹性和铁弹性有机半导体晶体为实现超柔性单晶电子学提供了途径。但是,对有机晶体中协同转变的机理了解还只是处于萌芽阶段,并且大多数此类研究都依赖于分子设计中的“试错法”。与金属合金中经过充分研究的相变相比,理解有机相变的关键挑战是难以捉摸的晶体学,其中涉及复杂的分子动力学和缺陷。在这里,我们利用相变理论,遗传算法完善的分子建模,和实验验证,以研究双(三异丙基甲硅烷基乙炔基)-并五苯半导体晶体中的通用协同跃迁。通过整合晶格晶体学和分子运动,系统地研究了分子旋转控制的热弹性,可相互转换的超弹性和铁弹性转变以及分子孪生。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。通过整合晶格晶体学和分子运动,系统地研究了分子旋转控制的热弹性,可相互转换的超弹性和铁弹性转变以及分子孪生。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。通过整合晶格晶体学和分子运动,系统地研究了分子旋转控制的热弹性,可相互转换的超弹性和铁弹性转变以及分子孪生。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。
更新日期:2021-03-09
中文翻译:
有机半导体晶体中超弹性和铁弹性的分子机理
通过协作相变实现的柔性有机晶体在固态化学中引起了极大的兴趣,以生产轻巧,生物相容且对环境无害的设备。最近发布的超弹性和铁弹性有机半导体晶体为实现超柔性单晶电子学提供了途径。但是,对有机晶体中协同转变的机理了解还只是处于萌芽阶段,并且大多数此类研究都依赖于分子设计中的“试错法”。与金属合金中经过充分研究的相变相比,理解有机相变的关键挑战是难以捉摸的晶体学,其中涉及复杂的分子动力学和缺陷。在这里,我们利用相变理论,遗传算法完善的分子建模,和实验验证,以研究双(三异丙基甲硅烷基乙炔基)-并五苯半导体晶体中的通用协同跃迁。通过整合晶格晶体学和分子运动,系统地研究了分子旋转控制的热弹性,可相互转换的超弹性和铁弹性转变以及分子孪生。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。通过整合晶格晶体学和分子运动,系统地研究了分子旋转控制的热弹性,可相互转换的超弹性和铁弹性转变以及分子孪生。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。通过整合晶格晶体学和分子运动,系统地研究了分子旋转控制的热弹性,可相互转换的超弹性和铁弹性转变以及分子孪生。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。我们举例说明了旋错偶极子的分子缺陷和与分子孪生过程相关的分子堆积缺陷。基本的理解支撑了各种有机固体中协同转变的分子机制,从而促进了对环境敏感的有机装置的新发展。