当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room‐Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-19 , DOI: 10.1002/aenm.202003493
Alex Yong Sheng Eng 1 , Vipin Kumar 2 , Yiwen Zhang 3 , Jianmin Luo 3 , Wenyu Wang 4 , Yongming Sun 4 , Weiyang Li 3 , Zhi Wei Seh 1
Affiliation  

The increasing energy demands of society today have led to the pursuit of alternative energy storage systems that can fulfil rigorous requirements like cost‐effectiveness and high storage capacities. Based fundamentally on earth‐abundant sodium and sulfur, room‐temperature sodium–sulfur batteries are a promising solution in applications where existing lithium‐ion technology remains less economically viable, particularly in large‐scale stationary systems such as grid‐level storage. Here, the key challenges in the field are first highlighted, followed by comprehensive analyses of accessible strategies to overcome them, starting from engineering of the anode–electrolyte interface in both liquid and solid electrolytes. Recently reported polymer and solid‐state electrolytes are also surveyed. Thereafter, the core principles guiding use‐inspired design of cathode architectures, covering the spectrum of elemental sulfur and polysulfide cathodes, to emerging host structures, and covalent composites are focused upon. Future prospects are explored, with insights into other alkali‐metal systems beyond sodium–sulfur batteries, such as the potassium–sulfur battery. Finally a conclusion is provided by outlining the research directions necessary to attain high energy sodium–sulfur devices, and potential solutions to issues concerning large‐scale production, so as to ultimately realize widespread deployment of practical energy storage systems.

中文翻译:

室温钠硫电池及其超越:通过阳极,阴极和电解质工程实现实用的高能系统

当今社会日益增长的能源需求导致人们寻求可满足严格要求(例如成本效益和高存储容量)的替代储能系统。室温钠硫电池基本上基于地球上丰富的钠和硫,在现有锂离子技术在经济上仍然不可行的应用中,尤其是在大型固定式系统(如网格级存储)中,是一种有前途的解决方案。在此,首先强调该领域的主要挑战,然后从对液体和固体电解质中阳极-电解质界面进行工程设计入手,对克服这些挑战的可行策略进行全面分析。还对最近报道的聚合物和固态电解质进行了调查。之后,着眼于指导指导使用的阴极体系结构设计的核心原则,涵盖了元素硫和多硫化物阴极的光谱,新兴的主体结构以及共价复合材料。探索了未来的前景,并深入了解了钠硫电池以外的其他碱金属系统,例如钾硫电池。最后,概述了获得高能钠硫装置所需的研究方向以及针对大规模生产问题的潜在解决方案,从而最终实现实用储能系统的广泛部署,得出了结论。对钠硫电池以外的其他碱金属系统(例如钾硫电池)有深入的了解。最后,概述了获得高能钠硫装置所需的研究方向以及针对大规模生产问题的潜在解决方案,从而最终实现实用储能系统的广泛部署,得出了结论。对钠硫电池以外的其他碱金属系统(例如钾硫电池)有深入的了解。最后,概述了获得高能钠硫装置所需的研究方向以及针对大规模生产问题的潜在解决方案,从而最终实现实用储能系统的广泛部署,得出了结论。
更新日期:2021-04-15
down
wechat
bug