当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm–2 and 20 mAh cm–2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-02-17 , DOI: 10.1021/jacs.0c11753 Zhao Cai 1 , Yangtao Ou 1 , Bao Zhang 2 , Jindi Wang 1 , Lin Fu 1 , Mintao Wan 1 , Guocheng Li 1 , Wenyu Wang 1 , Li Wang 3 , Jianjun Jiang 2 , Zhi Wei Seh 4 , Enyuan Hu 5 , Xiao-Qing Yang 5 , Yi Cui 6, 7 , Yongming Sun 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-02-17 , DOI: 10.1021/jacs.0c11753 Zhao Cai 1 , Yangtao Ou 1 , Bao Zhang 2 , Jindi Wang 1 , Lin Fu 1 , Mintao Wan 1 , Guocheng Li 1 , Wenyu Wang 1 , Li Wang 3 , Jianjun Jiang 2 , Zhi Wei Seh 4 , Enyuan Hu 5 , Xiao-Qing Yang 5 , Yi Cui 6, 7 , Yongming Sun 1
Affiliation
Metal anodes represent as a prime choice for the coming generation rechargeable batteries with high energy density. However, daunting challenges including electrode volume variation and inevitable side reactions preclude them from becoming a viable technology. Here, a facile replacement reaction was employed to fabricate a three-dimensional (3D) interdigitated metal/solid electrolyte composite electrode, which not only provides a stable host structure for buffering the volume change within the composite but also prevents side reactions by avoiding the direct contact between active metal and liquid electrolyte. As a proof-of-concept demonstration, a 3D interdigitated zinc (Zn) metal/solid electrolyte architecture was fabricated via a galvanic replacement reaction between Zn metal foil and indium (In) chloride solution followed by electrochemical activation, featuring the interdigitation between metallic Zn and amorphous indium hydroxide sulfate (IHS) with high Zn2+ conductivity (56.9 ± 1.8 mS cm–1), large Zn2+ transference number (0.55), and high electronic resistivity [(2.08 ± 0.01) × 103 Ω cm]. The as-designed Zn/IHS electrode sustained stable electrochemical Zn plating/stripping over 700 cycles with a record-low overpotential of 8 mV at 1 mA cm–2 and 0.5 mAh cm–2. More impressively, it displayed cycle-stable performance with low overpotential of 10 mV under ultrahigh current density and areal capacity (20 mA cm–2, 20 mAh cm–2), which outperformed all the reported Zn metal electrodes in mild aqueous electrolyte. The fabrication of interdigitated metal/solid electrolyte was generalized to other metal pairs, including Zn/Sn and Zn/Co, which provide inspiration for next-generation Zn metal batteries with high energy density and reversibility.
中文翻译:
可更换反应的叉指金属/固体电解质体系结构,可在20 mA cm –2和20 mAh cm –2的电池循环
金属阳极是下一代具有高能量密度的可充电电池的首选。然而,包括电极体积变化和不可避免的副反应在内的艰巨挑战使它们无法成为可行的技术。在此,采用了一种简便的置换反应来制造三维(3D)叉指状金属/固体电解质复合电极,该电极不仅提供了稳定的主体结构来缓冲复合物中的体积变化,而且还避免了直接反应,从而防止了副反应活性金属和液体电解质之间的接触。作为概念验证的演示,2+电导率(56.9±1.8毫秒cm的-1),大的Zn 2+迁移数(0.55),以及高电阻率[(2.08±0.01)×10 3 Ω厘米]。如此设计的Zn / IHS电极在700个循环中保持了稳定的电化学Zn电镀/剥离,在1 mA cm –2和0.5 mAh cm –2时的记录低过电势为8 mV 。更令人印象深刻的是,在超高电流密度和面容量(20 mA cm –2,20 mAh cm –2),其在温和的水性电解质中的性能优于所有报道的Zn金属电极。叉指金属/固体电解质的制造被推广到其他金属对,包括Zn / Sn和Zn / Co,这为具有高能量密度和可逆性的下一代Zn金属电池提供了灵感。
更新日期:2021-03-03
中文翻译:
可更换反应的叉指金属/固体电解质体系结构,可在20 mA cm –2和20 mAh cm –2的电池循环
金属阳极是下一代具有高能量密度的可充电电池的首选。然而,包括电极体积变化和不可避免的副反应在内的艰巨挑战使它们无法成为可行的技术。在此,采用了一种简便的置换反应来制造三维(3D)叉指状金属/固体电解质复合电极,该电极不仅提供了稳定的主体结构来缓冲复合物中的体积变化,而且还避免了直接反应,从而防止了副反应活性金属和液体电解质之间的接触。作为概念验证的演示,2+电导率(56.9±1.8毫秒cm的-1),大的Zn 2+迁移数(0.55),以及高电阻率[(2.08±0.01)×10 3 Ω厘米]。如此设计的Zn / IHS电极在700个循环中保持了稳定的电化学Zn电镀/剥离,在1 mA cm –2和0.5 mAh cm –2时的记录低过电势为8 mV 。更令人印象深刻的是,在超高电流密度和面容量(20 mA cm –2,20 mAh cm –2),其在温和的水性电解质中的性能优于所有报道的Zn金属电极。叉指金属/固体电解质的制造被推广到其他金属对,包括Zn / Sn和Zn / Co,这为具有高能量密度和可逆性的下一代Zn金属电池提供了灵感。