当前位置:
X-MOL 学术
›
Cryst. Growth Des.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Formation of θ-Fe3C Cementite via θ′-Fe3C (ω-Fe3C) in Fe–C Alloys
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2021-02-16 , DOI: 10.1021/acs.cgd.0c01533
De-hai Ping 1 , Hao Chen 2 , Hongping Xiang 2
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2021-02-16 , DOI: 10.1021/acs.cgd.0c01533
De-hai Ping 1 , Hao Chen 2 , Hongping Xiang 2
Affiliation
![]() |
Cementite (θ-Fe3C), as a well-known hard-phase particle, makes carbon steel strong and hard. As for the carbide formed from the Fe–C martensite structure, θ-Fe3C has been traditionally believed to precipitate from the martensite via a classical nucleation and grain growth mechanism. However, recent experimental results have revealed that the ω-Fe3C fine carbide particles in the twin-boundary region of twinned Fe–C martensite are a potential precursor of θ-Fe3C carbides. These ω-Fe3C fine particles can transform into θ′-Fe3C carbide particles via a particle-coarsening process without involving any atomic movement. Interestingly, the metastable θ′-Fe3C carbide has a similar crystal structure to that of θ-Fe3C, and both have the same amount of iron and carbon atoms (12Fe + 4C) in their unit cells. Thus, a θ′-Fe3C (ω-Fe3C) → θ-Fe3C transformation path has been proposed with the transformation mechanism investigated crystallographically. Transmission electron microscopy observations on the quenched high carbon Fe–C binary alloys have confirmed that a large θ-Fe3C particle is actually composed of a great number of ultrafine θ-Fe3C grains with almost the same crystal orientation, or the coarsening of a θ-Fe3C particle can be attributed to the aggregation of numerous ultrafine θ-Fe3C grains, which are transformed from ω-Fe3C via the path ω-Fe3C → ω′-Fe3C → θ′-Fe3C → θ-Fe3C.
中文翻译:
θ-的Fe形成3 Ç渗碳经由θ'-的Fe 3 C(ω-的Fe 3 C)以Fe-C合金
渗碳体(θ-的Fe 3 C),作为公知的硬质相的颗粒,使碳素钢强和硬。作为用于从铁碳马氏体结构形成的碳化物,θ-的Fe 3 C已被传统上经由经典成核和晶粒生长机理认为沉淀从马氏体。然而,最近的实验结果表明,ω -铁3中的双晶的Fe-C马氏体的双边界区域C细小的碳化物颗粒是θ-Fe的潜在前体3 C碳化物。这些ω-的Fe 3 Ç微粒可以转变成θ'-的Fe 3经由颗粒粗化处理C碳化物颗粒而不涉及任何原子运动。有趣的是,亚稳θ'-的Fe 3Ç碳化物具有类似的晶体结构,以该θ-的Fe 3 C,并在他们的单元电池都具有铁和碳原子的相同量(12Fe + 4C)。因此,θ'-的Fe 3 C(ω-的Fe 3 C)→θ-的Fe 3 Ç变换路径已经提出与所述变换机构晶体学研究。在透射电子显微镜观察淬火高碳的Fe-C二元合金已经证实,大θ-的Fe 3 Ç粒子实际上是由极细的大量的θ-的Fe 3个C颗粒几乎相同的晶体取向,或粗化的θ-的Fe 3 ç粒子可以归因于许多超细的聚集θ-的Fe 3C颗粒,这是从ω -铁转化3 c通过路径ω-的Fe 3 C ^→ω'-的Fe 3 C ^→θ'-的Fe 3 C ^→θ-的Fe 3 C.
更新日期:2021-03-03
中文翻译:

θ-的Fe形成3 Ç渗碳经由θ'-的Fe 3 C(ω-的Fe 3 C)以Fe-C合金
渗碳体(θ-的Fe 3 C),作为公知的硬质相的颗粒,使碳素钢强和硬。作为用于从铁碳马氏体结构形成的碳化物,θ-的Fe 3 C已被传统上经由经典成核和晶粒生长机理认为沉淀从马氏体。然而,最近的实验结果表明,ω -铁3中的双晶的Fe-C马氏体的双边界区域C细小的碳化物颗粒是θ-Fe的潜在前体3 C碳化物。这些ω-的Fe 3 Ç微粒可以转变成θ'-的Fe 3经由颗粒粗化处理C碳化物颗粒而不涉及任何原子运动。有趣的是,亚稳θ'-的Fe 3Ç碳化物具有类似的晶体结构,以该θ-的Fe 3 C,并在他们的单元电池都具有铁和碳原子的相同量(12Fe + 4C)。因此,θ'-的Fe 3 C(ω-的Fe 3 C)→θ-的Fe 3 Ç变换路径已经提出与所述变换机构晶体学研究。在透射电子显微镜观察淬火高碳的Fe-C二元合金已经证实,大θ-的Fe 3 Ç粒子实际上是由极细的大量的θ-的Fe 3个C颗粒几乎相同的晶体取向,或粗化的θ-的Fe 3 ç粒子可以归因于许多超细的聚集θ-的Fe 3C颗粒,这是从ω -铁转化3 c通过路径ω-的Fe 3 C ^→ω'-的Fe 3 C ^→θ'-的Fe 3 C ^→θ-的Fe 3 C.