当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomineral interface with superior cell adhesive and antibacterial properties based on enzyme-triggered digestion of saliva acquired pellicle-inspired polypeptide coatings
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2021-02-16 , DOI: 10.1016/j.cej.2021.128955
Xiao Yang , Chunmei Ding , Mingzhen Wu , Xinyuan Xu , Xiang Ke , Huilin Xu , Juan Li , Feng Lou , Kai Zhou , Haolun Jiang , Xu Peng , Xianlong Wang , Longlong Si , Jianshu Li

With the long-term clinical study of implantation materials, the problem of bioinertness on the implant surface emerged. The bioinert implant surface can cause inflammation, fibrosis, coagulation, and infections, and even threaten the life of patients. Herein, we designed and synthesized a saliva-acquired pellicle (SAP)-inspired multifunctional polypeptide DDDEEKRWRWRWGPLGVRGD (SAP-MP196-G-1) by orderly assembling the hydroxyapatite (HA)-adsorbing motif DDDEEK, antibacterial motif RWRWRW, bacterial enzyme-responding motif GPLGV, and cell adhesion motif RGD. The bioinspired polypeptide can self-assemble into nanoparticles and tightly adsorb onto the biomineral, such as the HA surface. The newly formed bio-interface exhibited two-fold higher adhesion and proliferation of MG63 cells and five-fold higher antibacterial properties against Staphylococcus aureus (S. aureus) compared to bare HA group. An in vivo study indicated that the bio-interface can promote implant wound healing and decrease infection of S. aureus on HA-coated implants. This study proposes a strategy to design a cell-adhesive and antibacterial-biomineral interface based on a dynamic enzyme-digestion reaction to effectively inhibit the side effects of implantation surface presence.



中文翻译:

基于唾液获得的防护膜启发的多肽涂层的酶促消化,具有优异的细胞粘附和抗菌特性的生物矿物质界面

随着植入材料的长期临床研究,出现了植入物表面生物惰性的问题。具有生物惰性的植入物表面可引起炎症,纤维化,凝血和感染,甚至威胁患者的生命。在本文中,我们通过有序组装吸附羟基磷灰石(HA)的基序DDDEEK,抗菌基序RWRWRW,细菌酶响应基序,设计并合成了唾液获得的防护膜(SAP)启发的多功能多肽DDDEEKRWRWRWRWGPLGVRGD(SAP-MP196-G-1) GPLGV和细胞粘附基序RGD。受生物启发的多肽可以自组装成纳米颗粒,并紧密吸附到生物矿物质(例如HA表面)上。新形成的生物界面对MG63细胞表现出两倍高的粘附力和增殖能力,对MG63细胞的抗菌性能高出五倍金黄色葡萄球菌S. aureus)与裸HA组相比。一项体内研究表明,生物界面可以促进植入物伤口愈合,并减少HA涂层植入物对金黄色葡萄球菌的感染。这项研究提出了一种策略,可基于动态酶消化反应来设计细胞-粘附和抗菌-生物矿物质的界面,以有效抑制植入表面存在的副作用。

更新日期:2021-02-16
down
wechat
bug