当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D Printed Supercapacitors toward Trinity Excellence in Kinetics, Energy Density, and Flexibility
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-15 , DOI: 10.1002/aenm.202100020 Wenbin Kang 1 , Li Zeng 1 , Shangwen Ling 1 , Chuhong Zhang 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-15 , DOI: 10.1002/aenm.202100020 Wenbin Kang 1 , Li Zeng 1 , Shangwen Ling 1 , Chuhong Zhang 1
Affiliation
Modern electronics place stringent requirements on power supplies, calling for high energy and power density within restricted footprints. 3D printing allows for customized electrode designs with outstanding loading densities and represents a seemingly promising solution. However, the sluggish mass transport within bulky matrices presents serious issues to charge storage kinetics. Doping engineering in conjunction with 3D printing is used to achieve a state‐of‐the‐art areal capacitance of 11.8 F cm−2, which is among the best for carbonaceous supercapacitors, results in an electrode heavily loaded at 85.1 mg cm−2. Simultaneously, an uncompromised kinetic performance rivaling high‐rate thin films is delivered, allowing for flash‐charging within 3.6 s while keeping 78.1% capacitance. In agreement with theses appealing features, an unprecedented energy density of 0.66 mWh cm−2 and power density of 1039.8 mW cm−2 for a symmetrical device are registered. Meanwhile, the printed device is equipped with superb mechanical compliance, a rarely achieved, yet gravely desired attribute for 3D printed energy storage devices. This work suggests that flexible energy storage devices with unimpaired kinetics at extremely large loading densities could be realized, therefore overturning the traditional mindset that such a performance can only be achieved in thin film devices which are, however, incapable of securing a large energy output.
中文翻译:
3D打印超级电容器在动力学,能量密度和灵活性方面均达到三位一体卓越
现代电子产品对电源有严格的要求,要求在有限的占地面积内实现高能量和高功率密度。3D打印可实现定制的电极设计,并具有出色的负载密度,是一种看似有希望的解决方案。然而,笨重的基质内的低速传质给电荷存储动力学带来了严重的问题。掺杂工程与3D打印结合使用可实现11.8 F cm -2的最先进面积电容,这对于碳质超级电容器而言是最好的,从而导致电极的重载为85.1 mg cm -2。同时,可提供可与高速率薄膜媲美的无与伦比的动力学性能,可在3.6 s内进行快速充电,同时保持78.1%的电容。与这些吸引人的特征相一致,前所未有的能量密度为0.66 mWh cm -2,功率密度为1039.8 mW cm -2用于对称设备的寄存器。同时,印刷设备配备了极好的机械柔韧性,这对于3D打印的能量存储设备来说很少能实现,但却是非常需要的属性。这项工作表明,可以实现在极高的负载密度下具有不受损害的动力学性能的柔性储能设备,因此,颠覆了传统的思维方式,即只能在薄膜设备中实现这种性能,而薄膜设备却不能确保大的能量输出。
更新日期:2021-03-25
中文翻译:
3D打印超级电容器在动力学,能量密度和灵活性方面均达到三位一体卓越
现代电子产品对电源有严格的要求,要求在有限的占地面积内实现高能量和高功率密度。3D打印可实现定制的电极设计,并具有出色的负载密度,是一种看似有希望的解决方案。然而,笨重的基质内的低速传质给电荷存储动力学带来了严重的问题。掺杂工程与3D打印结合使用可实现11.8 F cm -2的最先进面积电容,这对于碳质超级电容器而言是最好的,从而导致电极的重载为85.1 mg cm -2。同时,可提供可与高速率薄膜媲美的无与伦比的动力学性能,可在3.6 s内进行快速充电,同时保持78.1%的电容。与这些吸引人的特征相一致,前所未有的能量密度为0.66 mWh cm -2,功率密度为1039.8 mW cm -2用于对称设备的寄存器。同时,印刷设备配备了极好的机械柔韧性,这对于3D打印的能量存储设备来说很少能实现,但却是非常需要的属性。这项工作表明,可以实现在极高的负载密度下具有不受损害的动力学性能的柔性储能设备,因此,颠覆了传统的思维方式,即只能在薄膜设备中实现这种性能,而薄膜设备却不能确保大的能量输出。