Science of the Total Environment ( IF 8.2 ) Pub Date : 2021-02-12 , DOI: 10.1016/j.scitotenv.2021.145793 Mohammad Boshir Ahmed , Md. Saifur Rahman , Jahangir Alom , MD. Saif Hasan , M.A.H. Johir , M. Ibrahim H. Mondal , Da-Young Lee , Jaeil Park , John L. Zhou , Myung-Han Yoon
Microplastics (MPs) pollution has become one of the most severe environmental concerns today. MPs persist in the environment and cause adverse effects in organisms. This review aims to present a state-of-the-art overview of MPs in the aquatic environment. Personal care products, synthetic clothing, air-blasting facilities and drilling fluids from gas-oil industries, raw plastic powders from plastic manufacturing industries, waste plastic products and wastewater treatment plants act as the major sources of MPs. For MPs analysis, pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS), Py-MS methods, Raman spectroscopy, and FT-IR spectroscopy are regarded as the most promising methods for MPs identification and quantification. Due to the large surface area to volume ratio, crystallinity, hydrophobicity and functional groups, MPs can interact with various contaminants such as heavy metals, antibiotics and persistent organic contaminants. Among different physical and biological treatment technologies, the MPs removal performance decreases as membrane bioreactor (> 99%) > activated sludge process (~98%) > rapid sand filtration (~97.1%) > dissolved air floatation (~95%) > electrocoagulation (> 90%) > constructed wetlands (88%). Chemical treatment methods such as coagulation, magnetic separations, Fenton, photo-Fenton and photocatalytic degradation also show moderate to high efficiency of MP removal. Hybrid treatment technologies show the highest removal efficacies of MPs. Finally, future research directions for MPs are elaborated.
中文翻译:
水生环境中的塑料微粒:系统综述
微塑料(MPs)污染已成为当今最严重的环境问题之一。国会议员在环境中持续存在,并对生物造成不利影响。这篇综述旨在介绍水生环境中MP的最新概况。个人护理产品的主要来源是个人护理产品,合成服装,喷气设备和瓦斯油行业的钻井液,塑料制造行业的原料塑料粉,废塑料产品和废水处理厂。对于MP的分析,热解-气相色谱-质谱(Py-GC-MS),Py-MS方法,拉曼光谱和FT-IR光谱被认为是MP鉴定和定量的最有前途的方法。由于表面积/体积比,结晶度,疏水性和官能团较大,MP可与各种污染物(例如重金属,抗生素和持久性有机污染物)相互作用。在不同的物理和生物处理技术中,随着膜生物反应器(> 99%)>活性污泥工艺(〜98%)>快速砂滤(〜97.1%)>溶解气浮(〜95%)>电凝,MP的去除性能下降(> 90%)>人工湿地(88%)。化学处理方法(例如凝结,磁选,芬顿,光芬顿和光催化降解)也显示了中等至高效率的MP去除。混合处理技术显示出最高的MP去除效率。最后,阐述了议员的未来研究方向。在不同的物理和生物处理技术中,随着膜生物反应器(> 99%)>活性污泥工艺(〜98%)>快速砂滤(〜97.1%)>溶解气浮(〜95%)>电凝,MP的去除性能下降(> 90%)>人工湿地(88%)。化学处理方法(例如凝结,磁选,芬顿,光芬顿和光催化降解)也显示了中等至高效率的MP去除。混合处理技术显示出最高的MP去除效率。最后,阐述了议员的未来研究方向。在不同的物理和生物处理技术中,随着膜生物反应器(> 99%)>活性污泥工艺(〜98%)>快速砂滤(〜97.1%)>溶解气浮(〜95%)>电凝,MP的去除性能下降(> 90%)>人工湿地(88%)。化学处理方法(例如凝结,磁分离,芬顿,光芬顿和光催化降解)也显示了中等至高效率的MP去除。混合处理技术显示出最高的MP去除效率。最后,阐述了议员的未来研究方向。电凝(> 90%)>人工湿地(88%)。化学处理方法(例如凝结,磁选,芬顿,光芬顿和光催化降解)也显示了中等至高效率的MP去除。混合处理技术显示了MP的最高去除效率。最后,阐述了议员的未来研究方向。电凝(> 90%)>人工湿地(88%)。化学处理方法(例如凝结,磁选,芬顿,光芬顿和光催化降解)也显示了中等至高效率的MP去除。混合处理技术显示出最高的MP去除效率。最后,阐述了议员的未来研究方向。