当前位置:
X-MOL 学术
›
J. Differ. Geom.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A new construction of compact torsion-free $G_2$-manifolds by gluing families of Eguchi–Hanson spaces
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-02-10 , DOI: 10.4310/jdg/1612975017 Dominic Joyce 1 , Spiro Karigiannis 2
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-02-10 , DOI: 10.4310/jdg/1612975017 Dominic Joyce 1 , Spiro Karigiannis 2
Affiliation
We give a new construction of compact Riemannian $7$-manifolds with holonomy $G_2$. Let $M$ be a torsion-free $G_2$-manifold (which can have holonomy a proper subgroup of $G_2$) such that $M$ admits an involution $\iota$ preserving the $G_2$-structure. Then $M / {\langle \iota \rangle}$ is a $G_2$- orbifold, with singular set $L$ an associative submanifold of $M$, where the singularities are locally of the form $\mathbb{R}^3 \times (\mathbb{R}^4 / {\lbrace \pm 1 \rbrace})$. We resolve this orbifold by gluing in a family of Eguchi–Hanson spaces, parametrized by a nonvanishing closed and coclosed 1-form $\lambda$ on $L$.
Much of the analytic difficulty lies in constructing appropriate closed $G_2$-structures with sufficiently small torsion to be able to apply the general existence theorem of the first author. In particular, the construction involves solving a family of elliptic equations on the noncompact Eguchi–Hanson space, parametrized by the singular set $L$. We also present two generalizations of the main theorem, and we discuss several methods of producing examples from this construction.
中文翻译:
通过粘接Eguchi–Hanson空间族的新构造的紧凑型无扭转$ G_2 $流形
我们给出了新的紧致黎曼$ 7 $流形与完整$ G_2 $的构造。假设$ M $是无扭转的$ G_2 $-流形(可以使完整的$ G_2 $子集具有完整性),使得$ M $承认保留$ G_2 $结构的对合$ \ iota $。那么$ M / {\ langle \ iota \ rangle} $是一个$ G_2 $-歧义,其中奇异集$ L $是$ M $的一个关联子流形,其中奇异点在本地的形式为$ \ mathbb {R} ^ 3 \ times(\ mathbb {R} ^ 4 / {\ lbrace \ pm 1 \ rbrace})$。我们通过粘在一个Eguchi–Hanson空间家族中来解决这个难题,其特点是在$ L $上封闭且共封闭的1形式$ \ lambda $消失了。分析上的大部分困难在于构造具有足够小的扭转量的适当的闭合$ G_2 $结构,以能够应用第一作者的一般存在性定理。特别是,构造涉及在非紧致的Eguchi–Hanson空间上求解一类椭圆方程,由奇异集$ L $参数化。我们还给出了主定理的两种概括,并讨论了从该构造中产生示例的几种方法。
更新日期:2021-02-10
中文翻译:
通过粘接Eguchi–Hanson空间族的新构造的紧凑型无扭转$ G_2 $流形
我们给出了新的紧致黎曼$ 7 $流形与完整$ G_2 $的构造。假设$ M $是无扭转的$ G_2 $-流形(可以使完整的$ G_2 $子集具有完整性),使得$ M $承认保留$ G_2 $结构的对合$ \ iota $。那么$ M / {\ langle \ iota \ rangle} $是一个$ G_2 $-歧义,其中奇异集$ L $是$ M $的一个关联子流形,其中奇异点在本地的形式为$ \ mathbb {R} ^ 3 \ times(\ mathbb {R} ^ 4 / {\ lbrace \ pm 1 \ rbrace})$。我们通过粘在一个Eguchi–Hanson空间家族中来解决这个难题,其特点是在$ L $上封闭且共封闭的1形式$ \ lambda $消失了。分析上的大部分困难在于构造具有足够小的扭转量的适当的闭合$ G_2 $结构,以能够应用第一作者的一般存在性定理。特别是,构造涉及在非紧致的Eguchi–Hanson空间上求解一类椭圆方程,由奇异集$ L $参数化。我们还给出了主定理的两种概括,并讨论了从该构造中产生示例的几种方法。