当前位置: X-MOL 学术J. Differ. Geom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From the Hitchin section to opers through nonabelian Hodge
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-02-10 , DOI: 10.4310/jdg/1612975016
Olivia Dumitrescu 1 , Laura Fredrickson 2 , Georgios Kydonakis 3 , Rafe Mazzeo 2 , Motohico Mulase 4 , Andrew Neitzke 5
Affiliation  

For a complex simple simply connected Lie group $G$, and a compact Riemann surface $C$, we consider two sorts of families of flat $G$-connections over $C$. Each family is determined by a point $\mathbf{u}$ of the base of Hitchin’s integrable system for $(G,C)$. One family $\nabla_{\hbar ,\mathbf{u}}$ consists of $G$-opers, and depends on $\hbar \in \mathbb{C}^\times$. The other family $\nabla_{R, \zeta,\mathbf{u}}$ is built from solutions of Hitchin’s equations, and depends on $\zeta \in \mathbb{C}^\times , R \in \mathbb{R}^+$. We show that in the scaling limit $R \to 0, \zeta = \hbar R$, we have $\nabla_{R,\zeta,\mathbf{u}} \to \nabla_{\hbar,\mathbf{u}}$. This establishes and generalizes a conjecture formulated by Gaiotto.

中文翻译:

从希钦(Hitchin)地区到诺贝丽·霍奇(Nonabelian Hodge)的歌剧院

对于一个复杂的简单连接的李群$ G $和一个紧凑的Riemann曲面$ C $,我们考虑了两种类型的平面$ G $连接-$ C $以上的连接。每个家庭都由Hitchin可积系统的$(G,C)$的点$ \ mathbf {u} $来确定。一个家庭$ \ nabla _ {\ hbar,\ mathbf {u}} $由$ G $ -opers组成,并且取决于$ \ hbar \ in \ mathbb {C} ^ \ times $。另一个家庭$ \ nabla_ {R,\ zeta,\ mathbf {u}} $是根据Hitchin方程的解建立的,并且取决于$ \ zeta \ in \ mathbb {C} ^ \ times,R \ in \ mathbb { R} ^ + $。我们显示出在缩放限制$ R \到0,\ zeta = \ hbar R $,我们有$ \ nabla_ {R,\ zeta,\ mathbf {u}} \ to \ nabla _ {\ hbar,\ mathbf {u }} $。这建立并概括了Gaiotto提出的猜想。
更新日期:2021-02-10
down
wechat
bug